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vii

How to Use the CFA 
Program Curriculum

Congratulations on your decision to enter the Chartered Financial Analyst (CFA®) 
Program. This exciting and rewarding program of study reflects your desire to become 
a serious investment professional. You are embarking on a program noted for its high 
ethical standards and the breadth of knowledge, skills, and abilities (competencies) it 
develops. Your commitment should be educationally and professionally rewarding.

The credential you seek is respected around the world as a mark of accomplish-
ment and dedication. Each level of the program represents a distinct achievement in 
professional development. Successful completion of the program is rewarded with 
membership in a prestigious global community of investment professionals. CFA 
charterholders are dedicated to life- long learning and maintaining currency with 
the ever- changing dynamics of a challenging profession. CFA Program enrollment 
represents the first step toward a career- long commitment to professional education.

The CFA exam measures your mastery of the core knowledge, skills, and abilities 
required to succeed as an investment professional. These core competencies are the 
basis for the Candidate Body of Knowledge (CBOK™). The CBOK consists of four 
components:

■■ A broad outline that lists the major CFA Program topic areas (www.cfainstitute.
org/programs/cfa/curriculum/cbok);

■■ Topic area weights that indicate the relative exam weightings of the top- level 
topic areas (www.cfainstitute.org/programs/cfa/curriculum);

■■ Learning outcome statements (LOS) that advise candidates about the specific 
knowledge, skills, and abilities they should acquire from readings covering a 
topic area (LOS are provided in candidate study sessions and at the beginning 
of each reading); and

■■ CFA Program curriculum that candidates receive upon exam registration.

Therefore, the key to your success on the CFA exams is studying and understanding 
the CBOK. The following sections provide background on the CBOK, the organiza-
tion of the curriculum, features of the curriculum, and tips for designing an effective 
personal study program.

BACKGROUND ON THE CBOK

CFA Program is grounded in the practice of the investment profession. CFA Institute 
performs a continuous practice analysis with investment professionals around the 
world to determine the competencies that are relevant to the profession, beginning 
with the Global Body of Investment Knowledge (GBIK®). Regional expert panels and 
targeted surveys are conducted annually to verify and reinforce the continuous feed-
back about the GBIK. The practice analysis process ultimately defines the CBOK. The 
CBOK reflects the competencies that are generally accepted and applied by investment 
professionals. These competencies are used in practice in a generalist context and are 
expected to be demonstrated by a recently qualified CFA charterholder.

© 2021 CFA Institute. All rights reserved.
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viii How to Use the CFA Program Curriculum

The CFA Institute staff—in conjunction with the Education Advisory Committee 
and Curriculum Level Advisors, who consist of practicing CFA charterholders—designs 
the CFA Program curriculum in order to deliver the CBOK to candidates. The exams, 
also written by CFA charterholders, are designed to allow you to demonstrate your 
mastery of the CBOK as set forth in the CFA Program curriculum. As you structure 
your personal study program, you should emphasize mastery of the CBOK and the 
practical application of that knowledge. For more information on the practice anal-
ysis, CBOK, and development of the CFA Program curriculum, please visit www.
cfainstitute.org.

ORGANIZATION OF THE CURRICULUM

The Level I CFA Program curriculum is organized into 10 topic areas. Each topic area 
begins with a brief statement of the material and the depth of knowledge expected. 
It is then divided into one or more study sessions. These study sessions should form 
the basic structure of your reading and preparation. Each study session includes a 
statement of its structure and objective and is further divided into assigned readings. 
An outline illustrating the organization of these study sessions can be found at the 
front of each volume of the curriculum.

The readings are commissioned by CFA Institute and written by content experts, 
including investment professionals and university professors. Each reading includes 
LOS and the core material to be studied, often a combination of text, exhibits, and in- 
text examples and questions. End of Reading Questions (EORQs) followed by solutions 
help you understand and master the material. The LOS indicate what you should be 
able to accomplish after studying the material. The LOS, the core material, and the 
EORQs are dependent on each other, with the core material and EORQs providing 
context for understanding the scope of the LOS and enabling you to apply a principle 
or concept in a variety of scenarios.

The entire readings, including the EORQs, are the basis for all exam questions 
and are selected or developed specifically to teach the knowledge, skills, and abilities 
reflected in the CBOK. 

You should use the LOS to guide and focus your study because each exam question 
is based on one or more LOS and the core material and practice problems associated 
with the LOS. As a candidate, you are responsible for the entirety of the required 
material in a study session.

We encourage you to review the information about the LOS on our website (www.
cfainstitute.org/programs/cfa/curriculum/study- sessions), including the descriptions 
of LOS “command words” on the candidate resources page at www.cfainstitute.org.

FEATURES OF THE CURRICULUM

End of Reading Questions/Solutions All End of Reading Questions (EORQs) as well 
as their solutions are part of the curriculum and are required material for the exam. 
In addition to the in- text examples and questions, these EORQs help demonstrate 
practical applications and reinforce your understanding of the concepts presented. 
Some of these EORQs are adapted from past CFA exams and/or may serve as a basis 
for exam questions.

© CFA Institute. For candidate use only. Not for distribution.



ixHow to Use the CFA Program Curriculum

Glossary  For your convenience, each volume includes a comprehensive Glossary. 
Throughout the curriculum, a bolded word in a reading denotes a term defined in 
the Glossary. 

Note that the digital curriculum that is included in your exam registration fee is 
searchable for key words, including Glossary terms.

LOS Self- Check We have inserted checkboxes next to each LOS that you can use to 
track your progress in mastering the concepts in each reading.

Source Material The CFA Institute curriculum cites textbooks, journal articles, and 
other publications that provide additional context or information about topics covered 
in the readings. As a candidate, you are not responsible for familiarity with the original 
source materials cited in the curriculum. 

Note that some readings may contain a web address or URL. The referenced sites 
were live at the time the reading was written or updated but may have been deacti-
vated since then.

 

Some readings in the curriculum cite articles published in the Financial Analysts Journal®, 
which is the flagship publication of CFA Institute. Since its launch in 1945, the Financial 
Analysts Journal has established itself as the leading practitioner- oriented journal in the 
investment management community. Over the years, it has advanced the knowledge and 
understanding of the practice of investment management through the publication of 
peer- reviewed practitioner- relevant research from leading academics and practitioners. 
It has also featured thought- provoking opinion pieces that advance the common level of 
discourse within the investment management profession. Some of the most influential 
research in the area of investment management has appeared in the pages of the Financial 
Analysts Journal, and several Nobel laureates have contributed articles.

Candidates are not responsible for familiarity with Financial Analysts Journal articles 
that are cited in the curriculum. But, as your time and studies allow, we strongly encour-
age you to begin supplementing your understanding of key investment management 
issues by reading this, and other, CFA Institute practice- oriented publications through 
the Research & Analysis webpage (www.cfainstitute.org/en/research). 

Errata The curriculum development process is rigorous and includes multiple rounds 
of reviews by content experts. Despite our efforts to produce a curriculum that is free 
of errors, there are times when we must make corrections. Curriculum errata are peri-
odically updated and posted by exam level and test date online (www.cfainstitute.org/
en/programs/submit- errata). If you believe you have found an error in the curriculum, 
you can submit your concerns through our curriculum errata reporting process found 
at the bottom of the Curriculum Errata webpage. 

DESIGNING YOUR PERSONAL STUDY PROGRAM

Create a Schedule An orderly, systematic approach to exam preparation is critical. 
You should dedicate a consistent block of time every week to reading and studying. 
Complete all assigned readings and the associated problems and solutions in each study 
session. Review the LOS both before and after you study each reading to ensure that 
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x How to Use the CFA Program Curriculum

you have mastered the applicable content and can demonstrate the knowledge, skills, 
and abilities described by the LOS and the assigned reading. Use the LOS self- check 
to track your progress and highlight areas of weakness for later review.

Successful candidates report an average of more than 300 hours preparing for each 
exam. Your preparation time will vary based on your prior education and experience, 
and you will probably spend more time on some study sessions than on others. 

You should allow ample time for both in- depth study of all topic areas and addi-
tional concentration on those topic areas for which you feel the least prepared.

CFA INSTITUTE LEARNING ECOSYSTEM (LES)

As you prepare for your exam, we will email you important exam updates, testing 
policies, and study tips. Be sure to read these carefully.

Your exam registration fee includes access to the CFA Program Learning Ecosystem 
(LES). This digital learning platform provides access, even offline, to all of the readings 
and End of Reading Questions found in the print curriculum organized as a series of 
shorter online lessons with associated EORQs. This tool is your one- stop location for 
all study materials, including practice questions and mock exams.

The LES provides the following supplemental study tools:

Structured and Adaptive Study Plans The LES offers two ways to plan your study 
through the curriculum. The first is a structured plan that allows you to move through 
the material in the way that you feel best suits your learning. The second is an adaptive 
study plan based on the results of an assessment test that uses actual practice questions. 

Regardless of your chosen study path, the LES tracks your level of proficiency in 
each topic area and presents you with a dashboard of where you stand in terms of 
proficiency so that you can allocate your study time efficiently. 

Flashcards and Game Center The LES offers all the Glossary terms as Flashcards and 
tracks correct and incorrect answers. Flashcards can be filtered both by curriculum 
topic area and by action taken—for example, answered correctly, unanswered, and so 
on. These Flashcards provide a flexible way to study Glossary item definitions.

The Game Center provides several engaging ways to interact with the Flashcards in 
a game context. Each game tests your knowledge of the Glossary terms a in different 
way. Your results are scored and presented, along with a summary of candidates with 
high scores on the game, on your Dashboard. 

Discussion Board The Discussion Board within the LES provides a way for you to 
interact with other candidates as you pursue your study plan. Discussions can happen 
at the level of individual lessons to raise questions about material in those lessons that 
you or other candidates can clarify or comment on. Discussions can also be posted at 
the level of topics or in the initial Welcome section to connect with other candidates 
in your area.

Practice Question Bank The LES offers access to a question bank of hundreds of 
practice questions that are in addition to the End of Reading Questions. These practice 
questions, only available on the LES, are intended to help you assess your mastery of 
individual topic areas as you progress through your studies. After each practice ques-
tion, you will receive immediate feedback noting the correct response and indicating 
the relevant assigned reading so you can identify areas of weakness for further study. 
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xiHow to Use the CFA Program Curriculum

Mock Exams The LES also includes access to three- hour Mock Exams that simulate 
the morning and afternoon sessions of the actual CFA exam. These Mock Exams are 
intended to be taken after you complete your study of the full curriculum and take 
practice questions so you can test your understanding of the curriculum and your 
readiness for the exam. If you take these Mock Exams within the LES, you will receive 
feedback afterward that notes the correct responses and indicates the relevant assigned 
readings so you can assess areas of weakness for further study. We recommend that 
you take Mock Exams during the final stages of your preparation for the actual CFA 
exam. For more information on the Mock Exams, please visit www.cfainstitute.org.

PREP PROVIDERS

You may choose to seek study support outside CFA Institute in the form of exam prep 
providers. After your CFA Program enrollment, you may receive numerous solicita-
tions for exam prep courses and review materials. When considering a prep course, 
make sure the provider is committed to following the CFA Institute guidelines and 
high standards in its offerings. 

Remember, however, that there are no shortcuts to success on the CFA exams; 
reading and studying the CFA Program curriculum is the key to success on the exam. 
The CFA Program exams reference only the CFA Institute assigned curriculum; no 
prep course or review course materials are consulted or referenced.

SUMMARY

Every question on the CFA exam is based on the content contained in the required 
readings and on one or more LOS. Frequently, an exam question is based on a specific 
example highlighted within a reading or on a specific practice problem and its solution. 
To make effective use of the CFA Program curriculum, please remember these key points:

1 All pages of the curriculum are required reading for the exam.

2 All questions, problems, and their solutions are part of the curriculum and are 
required study material for the exam. These questions are found at the end of the 
readings in the print versions of the curriculum. In the LES, these questions appear 
directly after the lesson with which they are associated. The LES provides imme-
diate feedback on your answers and tracks your performance on these questions 
throughout your study.

3 We strongly encourage you to use the CFA Program Learning Ecosystem. In 
addition to providing access to all the curriculum material, including EORQs, in 
the form of shorter, focused lessons, the LES offers structured and adaptive study 
planning, a Discussion Board to communicate with other candidates, Flashcards, 
a Game Center for study activities, a test bank of practice questions, and online 
Mock Exams. Other supplemental study tools, such as eBook and PDF versions 
of the print curriculum, and additional candidate resources are available at www.
cfainstitute.org.

4 Using the study planner, create a schedule and commit sufficient study time to 
cover the study sessions. You should also plan to review the materials, answer 
practice questions, and take Mock Exams.

5 Some of the concepts in the study sessions may be superseded by updated 
rulings and/or pronouncements issued after a reading was published. Candidates 
are expected to be familiar with the overall analytical framework contained in the 
assigned readings. Candidates are not responsible for changes that occur after the 
material was written.
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xii How to Use the CFA Program Curriculum

FEEDBACK

At CFA Institute, we are committed to delivering a comprehensive and rigorous curric-
ulum for the development of competent, ethically grounded investment professionals. 
We rely on candidate and investment professional comments and feedback as we 
work to improve the curriculum, supplemental study tools, and candidate resources. 

Please send any comments or feedback to info@cfainstitute.org. You can be assured 
that we will review your suggestions carefully. Ongoing improvements in the curric-
ulum will help you prepare for success on the upcoming exams and for a lifetime of 
learning as a serious investment professional.

© CFA Institute. For candidate use only. Not for distribution.



Quantitative Methods

STUDY SESSIONS

Study Session 1 Quantitative Methods (1)
Study Session 2 Quantitative Methods (2)

TOPIC LEVEL LEARNING OUTCOME

The candidate should be able to explain and demonstrate the use of time value of 
money, data collection and analysis, elementary statistics, probability theory, prob-
ability distribution theory, sampling and estimation, hypothesis testing, and simple 
linear regression in financial decision- making. 

The quantitative concepts and applications that follow are fundamental to finan-
cial analysis and are used throughout the CFA Program curriculum. Quantitative 
methods are used widely in securities and risk analysis and in corporate finance to 
value capital projects and select investments. Descriptive statistics provide the tools 
to characterize and assess risk and return and other important financial or economic 
variables. Probability theory, sampling and estimation, and hypothesis testing support 
investment and risk decision making in the presence of uncertainty. Simple linear 
regression helps to understand the relationship between two variables and how to 
make predictions.

© 2021 CFA Institute. All rights reserved.
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Quantitative Methods (1)

This study session introduces quantitative concepts and techniques used in financial 
analysis and investment decision making. The time value of money and discounted 
cash flow analysis form the basis for cash flow and security valuation. Methods for 
organizing and visualizing data are presented; these key skills are required for effec-
tively performing financial analysis. Descriptive statistics used for conveying important 
data attributes such as central tendency, location, and dispersion are also presented. 
Characteristics of return distributions such as symmetry, skewness, and kurtosis are 
also introduced. Finally, all investment forecasts and decisions involve uncertainty: 
Therefore, probability theory and its application quantifying risk in investment deci-
sion making is considered. 

READING ASSIGNMENTS

Reading 1 The Time Value of Money 
by Richard A. DeFusco, PhD, CFA, Dennis W. McLeavey, 
DBA, CFA, Jerald E. Pinto, PhD, CFA, and David E. 
Runkle, PhD, CFA

Reading 2 Organizing, Visualizing, and Describing Data 
by Pamela Peterson Drake, PhD, CFA, and Jian Wu, PhD

Reading 3 Probability Concepts  
by Richard A. DeFusco, PhD, CFA, Dennis W. McLeavey, 
DBA, CFA, Jerald E. Pinto, PhD, CFA, and David E. 
Runkle, PhD, CFA

Q U A N T I T A T I V E  M E T H O D S

S T U D Y  S E S S I O N

1

© 2021 CFA Institute. All rights reserved.
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The Time Value of Money
by Richard A. DeFusco, PhD, CFA, Dennis W. McLeavey, DBA, CFA, 
Jerald E. Pinto, PhD, CFA, and David E. Runkle, PhD, CFA

Richard A. DeFusco, PhD, CFA, is at the University of Nebraska- Lincoln (USA). Dennis W. 
McLeavey, DBA, CFA, is at the University of Rhode Island (USA). Jerald E. Pinto, PhD, 
CFA, is at CFA Institute (USA). David E. Runkle, PhD, CFA, is at Jacobs Levy Equity 
Management (USA).

LEARNING OUTCOMES
Mastery The candidate should be able to:

a. interpret interest rates as required rates of return, discount rates, 
or opportunity costs;

b. explain an interest rate as the sum of a real risk- free rate and 
premiums that compensate investors for bearing distinct types of 
risk;

c. calculate and interpret the effective annual rate, given the stated 
annual interest rate and the frequency of compounding;

d. calculate the solution for time value of money problems with 
different frequencies of compounding;

e. calculate and interpret the future value (FV) and present value 
(PV) of a single sum of money, an ordinary annuity, an annuity 
due, a perpetuity (PV only), and a series of unequal cash flows;

f. demonstrate the use of a time line in modeling and solving time 
value of money problems.

INTRODUCTION

As individuals, we often face decisions that involve saving money for a future use, or 
borrowing money for current consumption. We then need to determine the amount 
we need to invest, if we are saving, or the cost of borrowing, if we are shopping for 
a loan. As investment analysts, much of our work also involves evaluating transac-
tions with present and future cash flows. When we place a value on any security, for 
example, we are attempting to determine the worth of a stream of future cash flows. 
To carry out all the above tasks accurately, we must understand the mathematics of 
time value of money problems. Money has time value in that individuals value a given 

1

R E A D I N G

1
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Reading 1 ■ The Time Value of Money6

amount of money more highly the earlier it is received. Therefore, a smaller amount 
of money now may be equivalent in value to a larger amount received at a future date. 
The time value of money as a topic in investment mathematics deals with equivalence 
relationships between cash flows with different dates. Mastery of time value of money 
concepts and techniques is essential for investment analysts.

The reading1 is organized as follows: Section 2 introduces some terminology used 
throughout the reading and supplies some economic intuition for the variables we will 
discuss. Sections 3–5 tackle the problem of determining the worth at a future point in 
time of an amount invested today. Section 6 addresses the future worth of a series of 
cash flows. These two sections provide the tools for calculating the equivalent value 
at a future date of a single cash flow or series of cash flows. Sections 7–10 discuss the 
equivalent value today of a single future cash flow and a series of future cash flows, 
respectively. In Sections 11–13, we explore how to determine other quantities of 
interest in time value of money problems.

INTEREST RATES

a interpret interest rates as required rates of return, discount rates, or opportu-
nity costs;

b explain an interest rate as the sum of a real risk- free rate and premiums that 
compensate investors for bearing distinct types of risk;

In this reading, we will continually refer to interest rates. In some cases, we assume 
a particular value for the interest rate; in other cases, the interest rate will be the 
unknown quantity we seek to determine. Before turning to the mechanics of time 
value of money problems, we must illustrate the underlying economic concepts. In 
this section, we briefly explain the meaning and interpretation of interest rates.

Time value of money concerns equivalence relationships between cash flows 
occurring on different dates. The idea of equivalence relationships is relatively simple. 
Consider the following exchange: You pay $10,000 today and in return receive $9,500 
today. Would you accept this arrangement? Not likely. But what if you received the 
$9,500 today and paid the $10,000 one year from now? Can these amounts be considered 
equivalent? Possibly, because a payment of $10,000 a year from now would probably 
be worth less to you than a payment of $10,000 today. It would be fair, therefore, 
to discount the $10,000 received in one year; that is, to cut its value based on how 
much time passes before the money is paid. An interest rate, denoted r, is a rate of 
return that reflects the relationship between differently dated cash flows. If $9,500 
today and $10,000 in one year are equivalent in value, then $10,000 − $9,500 = $500 
is the required compensation for receiving $10,000 in one year rather than now. The 
interest rate—the required compensation stated as a rate of return—is $500/$9,500 = 
0.0526 or 5.26 percent.

Interest rates can be thought of in three ways. First, they can be considered required 
rates of return—that is, the minimum rate of return an investor must receive in order 
to accept the investment. Second, interest rates can be considered discount rates. In 
the example above, 5.26 percent is that rate at which we discounted the $10,000 future 
amount to find its value today. Thus, we use the terms “interest rate” and “discount 
rate” almost interchangeably. Third, interest rates can be considered opportunity costs. 
An opportunity cost is the value that investors forgo by choosing a particular course 

2

1 Examples in this reading and other readings in quantitative methods at Level I were updated in 2018 by 
Professor Sanjiv Sabherwal of the University of Texas, Arlington.
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Interest Rates 7

of action. In the example, if the party who supplied $9,500 had instead decided to 
spend it today, he would have forgone earning 5.26 percent on the money. So we can 
view 5.26 percent as the opportunity cost of current consumption.

Economics tells us that interest rates are set in the marketplace by the forces of sup-
ply and demand, where investors are suppliers of funds and borrowers are demanders 
of funds. Taking the perspective of investors in analyzing market- determined interest 
rates, we can view an interest rate r as being composed of a real risk- free interest rate 
plus a set of four premiums that are required returns or compensation for bearing 
distinct types of risk:

 r = Real risk- free interest rate + Inflation premium + Default risk premium + 
Liquidity premium + Maturity premium

■■ The real risk- free interest rate is the single- period interest rate for a com-
pletely risk- free security if no inflation were expected. In economic theory, the 
real risk- free rate reflects the time preferences of individuals for current versus 
future real consumption.

■■ The inflation premium compensates investors for expected inflation and 
reflects the average inflation rate expected over the maturity of the debt. 
Inflation reduces the purchasing power of a unit of currency—the amount of 
goods and services one can buy with it. The sum of the real risk- free interest 
rate and the inflation premium is the nominal risk- free interest rate.2 Many 
countries have governmental short- term debt whose interest rate can be consid-
ered to represent the nominal risk- free interest rate in that country. The interest 
rate on a 90- day US Treasury bill (T- bill), for example, represents the nominal 
risk- free interest rate over that time horizon.3 US T- bills can be bought and sold 
in large quantities with minimal transaction costs and are backed by the full 
faith and credit of the US government.

■■ The default risk premium compensates investors for the possibility that the 
borrower will fail to make a promised payment at the contracted time and in 
the contracted amount.

■■ The liquidity premium compensates investors for the risk of loss relative to an 
investment’s fair value if the investment needs to be converted to cash quickly. 
US T- bills, for example, do not bear a liquidity premium because large amounts 
can be bought and sold without affecting their market price. Many bonds of 
small issuers, by contrast, trade infrequently after they are issued; the interest 
rate on such bonds includes a liquidity premium reflecting the relatively high 
costs (including the impact on price) of selling a position.

■■ The maturity premium compensates investors for the increased sensitivity 
of the market value of debt to a change in market interest rates as maturity is 
extended, in general (holding all else equal). The difference between the interest 

2 Technically, 1 plus the nominal rate equals the product of 1 plus the real rate and 1 plus the inflation rate. 
As a quick approximation, however, the nominal rate is equal to the real rate plus an inflation premium. 
In this discussion we focus on approximate additive relationships to highlight the underlying concepts.
3 Other developed countries issue securities similar to US Treasury bills. The French government issues 
BTFs or negotiable fixed- rate discount Treasury bills (Bons du Trésor à taux fixe et à intérêts précomptés) 
with maturities of up to one year. The Japanese government issues a short- term Treasury bill with matur-
ities of 6 and 12 months. The German government issues at discount both Treasury financing paper 
(Finanzierungsschätze des Bundes or, for short, Schätze) and Treasury discount paper (Bubills) with 
maturities up to 24 months. In the United Kingdom, the British government issues gilt- edged Treasury 
bills with maturities ranging from 1 to 364 days. The Canadian government bond market is closely related 
to the US market; Canadian Treasury bills have maturities of 3, 6, and 12 months.
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Reading 1 ■ The Time Value of Money8

rate on longer- maturity, liquid Treasury debt and that on short- term Treasury 
debt reflects a positive maturity premium for the longer- term debt (and possibly 
different inflation premiums as well).

Using this insight into the economic meaning of interest rates, we now turn to a 
discussion of solving time value of money problems, starting with the future value 
of a single cash flow.

FUTURE VALUE OF A SINGLE CASH FLOW (LUMP 
SUM)

e calculate and interpret the future value (FV) and present value (PV) of a single 
sum of money, an ordinary annuity, an annuity due, a perpetuity (PV only), and 
a series of unequal cash flows; 

f demonstrate the use of a time line in modeling and solving time value of money 
problems.

In this section, we introduce time value associated with a single cash flow or lump- sum 
investment. We describe the relationship between an initial investment or present 
value (PV), which earns a rate of return (the interest rate per period) denoted as r, 
and its future value (FV), which will be received N years or periods from today.

The following example illustrates this concept. Suppose you invest $100 (PV = 
$100) in an interest- bearing bank account paying 5 percent annually. At the end of 
the first year, you will have the $100 plus the interest earned, 0.05 × $100 = $5, for a 
total of $105. To formalize this one- period example, we define the following terms:

 PV = present value of the investment
 FVN = future value of the investment N periods from today
 r = rate of interest per period

For N = 1, the expression for the future value of amount PV is
FV1 = PV(1 + r)  

For this example, we calculate the future value one year from today as FV1 = $100(1.05) 
= $105.

Now suppose you decide to invest the initial $100 for two years with interest 
earned and credited to your account annually (annual compounding). At the end of 
the first year (the beginning of the second year), your account will have $105, which 
you will leave in the bank for another year. Thus, with a beginning amount of $105 
(PV = $105), the amount at the end of the second year will be $105(1.05) = $110.25. 
Note that the $5.25 interest earned during the second year is 5 percent of the amount 
invested at the beginning of Year 2.

Another way to understand this example is to note that the amount invested at 
the beginning of Year 2 is composed of the original $100 that you invested plus the 
$5 interest earned during the first year. During the second year, the original principal 
again earns interest, as does the interest that was earned during Year 1. You can see 
how the original investment grows:

3

(1)
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Future Value of a Single Cash Flow (Lump Sum) 9

Original investment $100.00
Interest for the first year ($100 × 0.05) 5.00
Interest for the second year based on original investment ($100 × 0.05) 5.00
Interest for the second year based on interest earned in the first year 
(0.05 × $5.00 interest on interest) 0.25

  Total $110.25

The $5 interest that you earned each period on the $100 original investment is known 
as simple interest (the interest rate times the principal). Principal is the amount of 
funds originally invested. During the two- year period, you earn $10 of simple interest. 
The extra $0.25 that you have at the end of Year 2 is the interest you earned on the 
Year 1 interest of $5 that you reinvested.

The interest earned on interest provides the first glimpse of the phenomenon 
known as compounding. Although the interest earned on the initial investment is 
important, for a given interest rate it is fixed in size from period to period. The com-
pounded interest earned on reinvested interest is a far more powerful force because, 
for a given interest rate, it grows in size each period. The importance of compounding 
increases with the magnitude of the interest rate. For example, $100 invested today 
would be worth about $13,150 after 100 years if compounded annually at 5 percent, 
but worth more than $20 million if compounded annually over the same time period 
at a rate of 13 percent.

To verify the $20 million figure, we need a general formula to handle compounding 
for any number of periods. The following general formula relates the present value of 
an initial investment to its future value after N periods:

FVN = PV(1 + r)N  

where r is the stated interest rate per period and N is the number of compounding 
periods. In the bank example, FV2 = $100(1 + 0.05)2 = $110.25. In the 13 percent 
investment example, FV100 = $100(1.13)100 = $20,316,287.42.

The most important point to remember about using the future value equation is 
that the stated interest rate, r, and the number of compounding periods, N, must be 
compatible. Both variables must be defined in the same time units. For example, if 
N is stated in months, then r should be the one- month interest rate, unannualized.

A time line helps us to keep track of the compatibility of time units and the interest 
rate per time period. In the time line, we use the time index t to represent a point in 
time a stated number of periods from today. Thus the present value is the amount 
available for investment today, indexed as t = 0. We can now refer to a time N periods 
from today as t = N. The time line in Figure 1 shows this relationship.

Figure 1   The Relationship between an Initial Investment, PV, and Its Future 
Value, FV

0 1  2  3 ... N – 1 N

PV FVN = PV(1 + r)N

In Figure 1, we have positioned the initial investment, PV, at t = 0. Using Equation 2, 
we move the present value, PV, forward to t = N by the factor (1 + r)N. This factor is 
called a future value factor. We denote the future value on the time line as FV and 

(2)

© CFA Institute. For candidate use only. Not for distribution.



Reading 1 ■ The Time Value of Money10

position it at t = N. Suppose the future value is to be received exactly 10 periods from 
today’s date (N = 10). The present value, PV, and the future value, FV, are separated 
in time through the factor (1 + r)10.

The fact that the present value and the future value are separated in time has 
important consequences:

■■ We can add amounts of money only if they are indexed at the same point in 
time.

■■ For a given interest rate, the future value increases with the number of periods.
■■ For a given number of periods, the future value increases with the interest rate.

To better understand these concepts, consider three examples that illustrate how to 
apply the future value formula.

EXAMPLE 1  

The Future Value of a Lump Sum with Interim Cash 
Reinvested at the Same Rate
You are the lucky winner of your state’s lottery of $5 million after taxes. You 
invest your winnings in a five- year certificate of deposit (CD) at a local financial 
institution. The CD promises to pay 7 percent per year compounded annually. 
This institution also lets you reinvest the interest at that rate for the duration of 
the CD. How much will you have at the end of five years if your money remains 
invested at 7 percent for five years with no withdrawals?

Solution: 
To solve this problem, compute the future value of the $5 million investment 
using the following values in Equation 2:

PV

FV PV

$5,000,000 1.07

$5

5

�
� �
�

� �� �
� � �
�

$ , ,
% .
5 000 000

7 0 07
5

1

r
N

rN
N

,,000,000 1.402552
$7,012,758.65

� �
�

At the end of five years, you will have $7,012,758.65 if your money remains 
invested at 7 percent with no withdrawals.

In this and most examples in this reading, note that the factors are reported at six 
decimal places but the calculations may actually reflect greater precision. For exam-
ple, the reported 1.402552 has been rounded up from 1.40255173 (the calculation is 
actually carried out with more than eight decimal places of precision by the calculator 
or spreadsheet). Our final result reflects the higher number of decimal places carried 
by the calculator or spreadsheet.4

4 We could also solve time value of money problems using tables of interest rate factors. Solutions using 
tabled values of interest rate factors are generally less accurate than solutions obtained using calculators 
or spreadsheets, so practitioners prefer calculators or spreadsheets.
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Future Value of a Single Cash Flow (Lump Sum) 11

EXAMPLE 2  

The Future Value of a Lump Sum with No Interim Cash
An institution offers you the following terms for a contract: For an investment 
of ¥2,500,000, the institution promises to pay you a lump sum six years from 
now at an 8 percent annual interest rate. What future amount can you expect?

Solution: 
Use the following data in Equation 2 to find the future value:

PV

FV PV

�
� �
�

� �� �
� � �
�

¥ , ,
% .

¥ , , .

¥

2 500 000
8 0 08
6

1

2 500 000 1 08

2

6

r
N

rN
N

,, , .
¥ , ,

500 000 1 586874
3 967 186

� �
�

You can expect to receive ¥3,967,186 six years from now.

Our third example is a more complicated future value problem that illustrates the 
importance of keeping track of actual calendar time.

EXAMPLE 3  

The Future Value of a Lump Sum
A pension fund manager estimates that his corporate sponsor will make a 
$10 million contribution five years from now. The rate of return on plan assets 
has been estimated at 9 percent per year. The pension fund manager wants to 
calculate the future value of this contribution 15 years from now, which is the 
date at which the funds will be distributed to retirees. What is that future value?

Solution:
By positioning the initial investment, PV, at t = 5, we can calculate the future 
value of the contribution using the following data in Equation 2:

PV  million

FV PV

10,000,000 1.09 1

�
� �
�

� �� �
� � �

$
% .

$

10
9 0 09
10

1

r
N

rN
N

00

10,000,000 2.367364
23,673,636.75

� � �
�

$
$

This problem looks much like the previous two, but it differs in one important 
respect: its timing. From the standpoint of today (t = 0), the future amount of 
$23,673,636.75 is 15 years into the future. Although the future value is 10 years 
from its present value, the present value of $10 million will not be received for 
another five years.
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Reading 1 ■ The Time Value of Money12

Figure 2   The Future Value of a Lump Sum, Initial Investment Not at t 
= 0

As Figure 2 shows, we have followed the convention of indexing today as t 
= 0 and indexing subsequent times by adding 1 for each period. The additional 
contribution of $10 million is to be received in five years, so it is indexed as 
t = 5 and appears as such in the figure. The future value of the investment in 
10 years is then indexed at t = 15; that is, 10 years following the receipt of the 
$10 million contribution at t = 5. Time lines like this one can be extremely useful 
when dealing with more- complicated problems, especially those involving more 
than one cash flow.

In a later section of this reading, we will discuss how to calculate the value today 
of the $10 million to be received five years from now. For the moment, we can use 
Equation 2. Suppose the pension fund manager in Example 3 above were to receive 
$6,499,313.86 today from the corporate sponsor. How much will that sum be worth 
at the end of five years? How much will it be worth at the end of 15 years?

PV 6,499,313.86

FV PV

6,499,313.86 1.09

�
� �
�

� �� �
�

$
% .

$

r
N

rN
N

9 0 09
5

1

�� �
� � �
�

5

6,499,313.86 1.538624
10,000,000 at the five-year 

$
$ mmark

and
PV 6,499,313.86

FV PV

6,499,313.86 1.0

�
� �
�

� �� �
�

$
% .

$

r
N

rN
N

9 0 09
15

1

99

6,499,313.86 3.642482
23,673,636.74 at the 15-ye

15� �
� � �
�

$
$ aar mark

These results show that today’s present value of about $6.5 million becomes $10 million 
after five years and $23.67 million after 15 years.
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NON- ANNUAL COMPOUNDING (FUTURE VALUE)

d calculate the solution for time value of money problems with different frequen-
cies of compounding; 

In this section, we examine investments paying interest more than once a year. For 
instance, many banks offer a monthly interest rate that compounds 12 times a year. 
In such an arrangement, they pay interest on interest every month. Rather than quote 
the periodic monthly interest rate, financial institutions often quote an annual interest 
rate that we refer to as the stated annual interest rate or quoted interest rate. We 
denote the stated annual interest rate by rs. For instance, your bank might state that 
a particular CD pays 8 percent compounded monthly. The stated annual interest rate 
equals the monthly interest rate multiplied by 12. In this example, the monthly interest 
rate is 0.08/12 = 0.0067 or 0.67 percent.5 This rate is strictly a quoting convention 
because (1 + 0.0067)12 = 1.083, not 1.08; the term (1 + rs) is not meant to be a future 
value factor when compounding is more frequent than annual.

With more than one compounding period per year, the future value formula can 
be expressed as

FV PVN
s

mNr
m

� ��

�
�

�

�
�1

where rs is the stated annual interest rate, m is the number of compounding periods 
per year, and N now stands for the number of years. Note the compatibility here 
between the interest rate used, rs/m, and the number of compounding periods, mN. 
The periodic rate, rs/m, is the stated annual interest rate divided by the number of 
compounding periods per year. The number of compounding periods, mN, is the 
number of compounding periods in one year multiplied by the number of years. The 
periodic rate, rs/m, and the number of compounding periods, mN, must be compatible.

EXAMPLE 4  

The Future Value of a Lump Sum with Quarterly 
Compounding
Continuing with the CD example, suppose your bank offers you a CD with a two- 
year maturity, a stated annual interest rate of 8 percent compounded quarterly, 
and a feature allowing reinvestment of the interest at the same interest rate. You 
decide to invest $10,000. What will the CD be worth at maturity?

4

(3)

5 To avoid rounding errors when using a financial calculator, divide 8 by 12 and then press the %i key, 
rather than simply entering 0.67 for %i, so we have (1 + 0.08/12)12 = 1.083000.
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Solution:
Compute the future value with Equation 3 as follows:

PV 10,000

 interest

�
� �

�
� �

�

� � � �

$
% .

. .

r
m

r m
N

mN

s

s

8 0 08
4
0 08 4 0 02
2
4 2 8   periods

FV PV

10,000 1.02

10,000 1.17165

N
s

mNr
m

� ��

�
�

�

�
�

� � �
�

1

8$

$ 99
11,716.59

� �
� $

At maturity, the CD will be worth $11,716.59.

The future value formula in Equation 3 does not differ from the one in Equation 2. 
Simply keep in mind that the interest rate to use is the rate per period and the expo-
nent is the number of interest, or compounding, periods.

EXAMPLE 5  

The Future Value of a Lump Sum with Monthly 
Compounding
An Australian bank offers to pay you 6 percent compounded monthly. You decide 
to invest A$1 million for one year. What is the future value of your investment 
if interest payments are reinvested at 6 percent?

Solution:
Use Equation 3 to find the future value of the one- year investment as follows:

PV A 1,000,000

1

�
� �

�
� �

�

� � � �

$
% .

. .

r
m

r m
N

mN

s

s

6 0 06
12
0 06 12 0 0050
1
12 1 22 interest periods

FV PV

A 1,000,000 1.005 1

N
s

mNr
m

� ��

�
�

�

�
�

� � �

1

$ 22

A 1,000,000 1.061678
A 1,061,677.81

� � �
�

$
$

If you had been paid 6 percent with annual compounding, the future amount 
would be only A$1,000,000(1.06) = A$1,060,000 instead of A$1,061,677.81 with 
monthly compounding.
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CONTINUOUS COMPOUNDING, STATED AND 
EFFECTIVE RATES

c calculate and interpret the effective annual rate, given the stated annual interest 
rate and the frequency of compounding; 

d calculate the solution for time value of money problems with different frequen-
cies of compounding;

The preceding discussion on compounding periods illustrates discrete compounding, 
which credits interest after a discrete amount of time has elapsed. If the number of 
compounding periods per year becomes infinite, then interest is said to compound 
continuously. If we want to use the future value formula with continuous compound-
ing, we need to find the limiting value of the future value factor for m → ∞ (infinitely 
many compounding periods per year) in Equation 3. The expression for the future 
value of a sum in N years with continuous compounding is

FV PVN
r Ne s=

The term er Ns  is the transcendental number e ≈ 2.7182818 raised to the power rsN. 
Most financial calculators have the function ex.

EXAMPLE 6  

The Future Value of a Lump Sum with Continuous 
Compounding
Suppose a $10,000 investment will earn 8 percent compounded continuously 
for two years. We can compute the future value with Equation 4 as follows:

PV 10,000

FV PV

10,000
10,000 1

0.08

�
� �

�

�

�

�

� �

$
% .

$
$

r
N

e

e

s

N
r Ns

8 0 08
2

2

..173511
11,735.11

� �
� $

With the same interest rate but using continuous compounding, the $10,000 
investment will grow to $11,735.11 in two years, compared with $11,716.59 
using quarterly compounding as shown in Example 4.

Table 1 shows how a stated annual interest rate of 8 percent generates different ending 
dollar amounts with annual, semiannual, quarterly, monthly, daily, and continuous 
compounding for an initial investment of $1 (carried out to six decimal places).

As Table 1 shows, all six cases have the same stated annual interest rate of 8 per-
cent; they have different ending dollar amounts, however, because of differences in 
the frequency of compounding. With annual compounding, the ending amount is 
$1.08. More frequent compounding results in larger ending amounts. The ending 
dollar amount with continuous compounding is the maximum amount that can be 
earned with a stated annual rate of 8 percent.

5

(4)
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Table 1   The Effect of Compounding Frequency on Future Value

Frequency rs/m mN Future Value of $1

Annual 8%/1 = 8% 1 × 1 = 1 $1.00(1.08) = $1.08
Semiannual 8%/2 = 4% 2 × 1 = 2 $1.00(1.04)2 = $1.081600
Quarterly 8%/4 = 2% 4 × 1 = 4 $1.00(1.02)4 = $1.082432
Monthly 8%/12 = 0.6667% 12 × 1 = 12 $1.00(1.006667)12 = $1.083000
Daily 8%/365 = 0.0219% 365 × 1 = 365 $1.00(1.000219)365 = $1.083278
Continuous $1.00e0.08(1) = $1.083287

Table 1 also shows that a $1 investment earning 8.16 percent compounded annu-
ally grows to the same future value at the end of one year as a $1 investment earning 
8 percent compounded semiannually. This result leads us to a distinction between 
the stated annual interest rate and the effective annual rate (EAR).6 For an 8 percent 
stated annual interest rate with semiannual compounding, the EAR is 8.16 percent.

5.1 Stated and Effective Rates
The stated annual interest rate does not give a future value directly, so we need a for-
mula for the EAR. With an annual interest rate of 8 percent compounded semiannually, 
we receive a periodic rate of 4 percent. During the course of a year, an investment of 
$1 would grow to $1(1.04)2 = $1.0816, as illustrated in Table 1. The interest earned 
on the $1 investment is $0.0816 and represents an effective annual rate of interest of 
8.16 percent. The effective annual rate is calculated as follows:

EAR = (1 + Periodic interest rate)m – 1  

The periodic interest rate is the stated annual interest rate divided by m, where m is 
the number of compounding periods in one year. Using our previous example, we can 
solve for EAR as follows: (1.04)2 − 1 = 8.16 percent.

The concept of EAR extends to continuous compounding. Suppose we have a rate 
of 8 percent compounded continuously. We can find the EAR in the same way as above 
by finding the appropriate future value factor. In this case, a $1 investment would 
grow to $1e0.08(1.0) = $1.0833. The interest earned for one year represents an effective 
annual rate of 8.33 percent and is larger than the 8.16 percent EAR with semiannual 
compounding because interest is compounded more frequently. With continuous 
compounding, we can solve for the effective annual rate as follows:

EAR 1� �ers

(5)

(6)

6 Among the terms used for the effective annual return on interest- bearing bank deposits are annual 
percentage yield (APY) in the United States and equivalent annual rate (EAR) in the United Kingdom. 
By contrast, the annual percentage rate (APR) measures the cost of borrowing expressed as a yearly 
rate. In the United States, the APR is calculated as a periodic rate times the number of payment periods 
per year and, as a result, some writers use APR as a general synonym for the stated annual interest rate. 
Nevertheless, APR is a term with legal connotations; its calculation follows regulatory standards that vary 
internationally. Therefore, “stated annual interest rate” is the preferred general term for an annual interest 
rate that does not account for compounding within the year.
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Future Value of a Series of Cash Flows, Future Value Annuities 17

We can reverse the formulas for EAR with discrete and continuous compounding to 
find a periodic rate that corresponds to a particular effective annual rate. Suppose we 
want to find the appropriate periodic rate for a given effective annual rate of 8.16 per-
cent with semiannual compounding. We can use Equation 5 to find the periodic rate:

0.0816 1 Periodic rate 1

1.0816 1 Periodic rate

1.0816

2

2

� �� � �

� �� �
�� � � �

� � � �

�

1 1 Periodic rate

1.04 1 Periodic rate
4% Periodic rat

2

ee
To calculate the continuously compounded rate (the stated annual interest rate with 
continuous compounding) corresponding to an effective annual rate of 8.33 percent, 
we find the interest rate that satisfies Equation 6:

0.0833 1

1.0833

� �

�

e

e

r

r

s

s

To solve this equation, we take the natural logarithm of both sides. (Recall that the 
natural log of ers  is ln e rr

ss = .) Therefore, ln 1.0833 = rs, resulting in rs = 8 percent. 
We see that a stated annual rate of 8 percent with continuous compounding is equiv-
alent to an EAR of 8.33 percent.

FUTURE VALUE OF A SERIES OF CASH FLOWS, 
FUTURE VALUE ANNUITIES

e calculate and interpret the future value (FV) and present value (PV) of a single 
sum of money, an ordinary annuity, an annuity due, a perpetuity (PV only), and 
a series of unequal cash flows; 

f demonstrate the use of a time line in modeling and solving time value of money 
problems.

In this section, we consider series of cash flows, both even and uneven. We begin 
with a list of terms commonly used when valuing cash flows that are distributed over 
many time periods.

■■ An annuity is a finite set of level sequential cash flows.
■■ An ordinary annuity has a first cash flow that occurs one period from now 

(indexed at t = 1).
■■ An annuity due has a first cash flow that occurs immediately (indexed at t = 0).
■■ A perpetuity is a perpetual annuity, or a set of level never- ending sequential 

cash flows, with the first cash flow occurring one period from now.

6.1 Equal Cash Flows—Ordinary Annuity
Consider an ordinary annuity paying 5 percent annually. Suppose we have five sep-
arate deposits of $1,000 occurring at equally spaced intervals of one year, with the 
first payment occurring at t = 1. Our goal is to find the future value of this ordinary 
annuity after the last deposit at t = 5. The increment in the time counter is one year, 
so the last payment occurs five years from now. As the time line in Figure 3 shows, we 

6
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Reading 1 ■ The Time Value of Money18

find the future value of each $1,000 deposit as of t = 5 with Equation 2, FVN = PV(1 + 
r)N. The arrows in Figure 3 extend from the payment date to t = 5. For instance, the 
first $1,000 deposit made at t = 1 will compound over four periods. Using Equation 2, 
we find that the future value of the first deposit at t = 5 is $1,000(1.05)4 = $1,215.51. 
We calculate the future value of all other payments in a similar fashion. (Note that we 
are finding the future value at t = 5, so the last payment does not earn any interest.) 
With all values now at t = 5, we can add the future values to arrive at the future value 
of the annuity. This amount is $5,525.63.

Figure 3   The Future Value of a Five- Year Ordinary Annuity

| | | | |
 0 1 2 3 4 5

   $1,000(1.05)4 = $1,215.506250
$1,000    $1,000(1.05)3 = $1,157.625000

$1,000    $1,000(1.05)2 = $1,102.500000
$1,000    $1,000(1.05)1 = $1,050.000000

$1,000
$1,000(1.05)0 = $1,000.000000

Sum at t = 5 $5,525.63

We can arrive at a general annuity formula if we define the annuity amount as A, 
the number of time periods as N, and the interest rate per period as r. We can then 
define the future value as

FVN
N N NA r r r r r� �� � � �� � � �� � � � �� � � �� ��

��
�
��

� � �1 1 1 1 11 2 3 1 0


which simplifies to

FVN A
r N

r
�

�� � ��

�

�
�

�

�

�
�

1 1

The term in brackets is the future value annuity factor. This factor gives the future 
value of an ordinary annuity of $1 per period. Multiplying the future value annuity 
factor by the annuity amount gives the future value of an ordinary annuity. For the 
ordinary annuity in Figure 3, we find the future value annuity factor from Equation 7 as

1.05
5.525631

� � ��

�

�
�

�

�

�
�
�

5 1
0 05.

With an annuity amount A = $1,000, the future value of the annuity is $1,000(5.525631) 
= $5,525.63, an amount that agrees with our earlier work.

The next example illustrates how to find the future value of an ordinary annuity 
using the formula in Equation 7.

(7)
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EXAMPLE 7  

The Future Value of an Annuity
Suppose your company’s defined contribution retirement plan allows you to 
invest up to €20,000 per year. You plan to invest €20,000 per year in a stock 
index fund for the next 30 years. Historically, this fund has earned 9 percent per 
year on average. Assuming that you actually earn 9 percent a year, how much 
money will you have available for retirement after making the last payment?

Solution:
Use Equation 7 to find the future amount:

 A = €20,000
 r = 9% = 0.09
 N = 30

 FV annuity factor = 
1 1 1 09 1

0 09
136 307539

30�� � �
�
� � �

�
r
r

N .
.

.

 FVN = €20,000(136.307539)
  = €2,726,150.77

Assuming the fund continues to earn an average of 9 percent per year, you will 
have €2,726,150.77 available at retirement.

6.2 Unequal Cash Flows
In many cases, cash flow streams are unequal, precluding the simple use of the future 
value annuity factor. For instance, an individual investor might have a savings plan 
that involves unequal cash payments depending on the month of the year or lower 
savings during a planned vacation. One can always find the future value of a series 
of unequal cash flows by compounding the cash flows one at a time. Suppose you 
have the five cash flows described in Table 2, indexed relative to the present (t = 0).

Table 2   A Series of Unequal Cash Flows and Their Future 
Values at 5 Percent

Time Cash Flow ($) Future Value at Year 5

t = 1 1,000 $1,000(1.05)4 = $1,215.51
t = 2 2,000 $2,000(1.05)3 = $2,315.25
t = 3 4,000 $4,000(1.05)2 = $4,410.00
t = 4 5,000 $5,000(1.05)1 = $5,250.00
t = 5 6,000 $6,000(1.05)0 = $6,000.00

Sum = $19,190.76

All of the payments shown in Table  2 are different. Therefore, the most direct 
approach to finding the future value at t = 5 is to compute the future value of each 
payment as of t = 5 and then sum the individual future values. The total future value 
at Year 5 equals $19,190.76, as shown in the third column. Later in this reading, you 
will learn shortcuts to take when the cash flows are close to even; these shortcuts will 
allow you to combine annuity and single- period calculations.
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PRESENT VALUE OF A SINGLE CASH FLOW (LUMP 
SUM)

e calculate and interpret the future value (FV) and present value (PV) of a single 
sum of money, an ordinary annuity, an annuity due, a perpetuity (PV only), and 
a series of unequal cash flows; 

f demonstrate the use of a time line in modeling and solving time value of money 
problems.

Just as the future value factor links today’s present value with tomorrow’s future 
value, the present value factor allows us to discount future value to present value. 
For example, with a 5 percent interest rate generating a future payoff of $105 in one 
year, what current amount invested at 5 percent for one year will grow to $105? The 
answer is $100; therefore, $100 is the present value of $105 to be received in one year 
at a discount rate of 5 percent.

Given a future cash flow that is to be received in N periods and an interest rate per 
period of r, we can use the formula for future value to solve directly for the present 
value as follows:

FV PV

PV FV

PV FV

N
N

N N

N
N

r

r

r

� �� �

�
�� �

�

�
�
�

�

�
�
�

� �� ��

1

1

1

1

We see from Equation 8 that the present value factor, (1 + r)−N, is the reciprocal of 
the future value factor, (1 + r)N.

EXAMPLE 8  

The Present Value of a Lump Sum
An insurance company has issued a Guaranteed Investment Contract (GIC) 
that promises to pay $100,000 in six years with an 8 percent return rate. What 
amount of money must the insurer invest today at 8 percent for six years to 
make the promised payment?

Solution:
We can use Equation 8 to find the present value using the following data:

FV 100,000

PV FV

100,000

N

N
N

r
N

r

�

� �
�

� �� �

�
� �

�

�
�
�

�

$
% .

$
.

8 0 08
6

1

1

1 08 6

��

�
�
�

� � �
�

$
$
100,000 0.6301696
63,016.96

7

(8)
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Present Value of a Single Cash Flow (Lump Sum) 21

We can say that $63,016.96 today, with an interest rate of 8  percent, is 
equivalent to $100,000 to be received in six years. Discounting the $100,000 
makes a future $100,000 equivalent to $63,016.96 when allowance is made for 
the time value of money. As the time line in Figure 4 shows, the $100,000 has 
been discounted six full periods.

Figure 4   The Present Value of a Lump Sum to Be Received at Time t = 6

1 2 3 4 6

PV = $63,016.96

$100,000 = FV

50

EXAMPLE 9  

The Projected Present Value of a More Distant Future 
Lump Sum
Suppose you own a liquid financial asset that will pay you $100,000 in 10 years 
from today. Your daughter plans to attend college four years from today, and 
you want to know what the asset’s present value will be at that time. Given an 
8 percent discount rate, what will the asset be worth four years from today?

Solution:
The value of the asset is the present value of the asset’s promised payment. At 
t = 4, the cash payment will be received six years later. With this information, 
you can solve for the value four years from today using Equation 8:

FV 100,000

PV FV

100,000

10

N

N
N

r
N

r

�

� �
�

� �� �

�
� �

�

�

$
% .

$
.

$

8 0 08
6

1
1

1 08 6

00,000 0.6301696
63,016.96

� �
� $
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Figure 5   The Relationship between Present Value and Future Value

0 ... 4 ... 10

$46,319.35 $63,016.96

$100,000

The time line in Figure 5 shows the future payment of $100,000 that is to 
be received at t = 10. The time line also shows the values at t = 4 and at t = 0. 
Relative to the payment at t = 10, the amount at t = 4 is a projected present 
value, while the amount at t = 0 is the present value (as of today).

Present value problems require an evaluation of the present value factor, (1 + r)−N. 
Present values relate to the discount rate and the number of periods in the following 
ways:

■■ For a given discount rate, the farther in the future the amount to be received, 
the smaller that amount’s present value.

■■ Holding time constant, the larger the discount rate, the smaller the present 
value of a future amount.

NON- ANNUAL COMPOUNDING (PRESENT VALUE)

d calculate the solution for time value of money problems with different frequen-
cies of compounding; 

Recall that interest may be paid semiannually, quarterly, monthly, or even daily. To 
handle interest payments made more than once a year, we can modify the present 
value formula (Equation 8) as follows. Recall that rs is the quoted interest rate and 
equals the periodic interest rate multiplied by the number of compounding periods 
in each year. In general, with more than one compounding period in a year, we can 
express the formula for present value as

PV FV� �� ��N
r
m

mN
s1

where

 m = number of compounding periods per year
 rs = quoted annual interest rate
 N = number of years

The formula in Equation 9 is quite similar to that in Equation 8. As we have already 
noted, present value and future value factors are reciprocals. Changing the frequency 
of compounding does not alter this result. The only difference is the use of the periodic 
interest rate and the corresponding number of compounding periods.

The following example illustrates Equation 9.

8

(9)
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EXAMPLE 10  

The Present Value of a Lump Sum with Monthly 
Compounding
The manager of a Canadian pension fund knows that the fund must make a 
lump- sum payment of C$5 million 10 years from now. She wants to invest an 
amount today in a GIC so that it will grow to the required amount. The current 
interest rate on GICs is 6  percent a year, compounded monthly. How much 
should she invest today in the GIC?

Solution:
Use Equation 9 to find the required present value:

FV C 5,000,000N

s

s

r
m

r m
N

mN

�

� �

�
� �

�

� � �

$
% .

. .

6 0 06
12
0 06 12 0 005
10
12 10 ��

� �� �
� � �
�

�

�

120

1PV FV

C 5,000,000 1.005

C 5,000,000 0.

120

N
r
m

mN
s

$

$ 5549633
C 2,748,163.67

� �
� $

In applying Equation 9, we use the periodic rate (in this case, the monthly rate) 
and the appropriate number of periods with monthly compounding (in this case, 
10 years of monthly compounding, or 120 periods).

PRESENT VALUE OF A SERIES OF EQUAL CASH FLOWS 
(ANNUITIES) AND UNEQUAL CASH FLOWS

e calculate and interpret the future value (FV) and present value (PV) of a single 
sum of money, an ordinary annuity, an annuity due, a perpetuity (PV only), and 
a series of unequal cash flows; 

f demonstrate the use of a time line in modeling and solving time value of money 
problems.

Many applications in investment management involve assets that offer a series of 
cash flows over time. The cash flows may be highly uneven, relatively even, or equal. 
They may occur over relatively short periods of time, longer periods of time, or even 
stretch on indefinitely. In this section, we discuss how to find the present value of a 
series of cash flows.

9
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9.1 The Present Value of a Series of Equal Cash Flows
We begin with an ordinary annuity. Recall that an ordinary annuity has equal annuity 
payments, with the first payment starting one period into the future. In total, the 
annuity makes N payments, with the first payment at t = 1 and the last at t = N. We 
can express the present value of an ordinary annuity as the sum of the present values 
of each individual annuity payment, as follows:

PV �
�� �

�
�� �

�
�� �

� �
�� �

�
�� ��

A
r

A

r

A

r

A

r

A

rN N1 1 1 1 12 3 1

where

 A = the annuity amount
 r = the interest rate per period corresponding to the frequency of annuity 

payments (for example, annual, quarterly, or monthly)
 N = the number of annuity payments

Because the annuity payment (A) is a constant in this equation, it can be factored out 
as a common term. Thus the sum of the interest factors has a shortcut expression:

PV �

�
�� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

A
r N

r

1 1

1

In much the same way that we computed the future value of an ordinary annuity, we 
find the present value by multiplying the annuity amount by a present value annuity 
factor (the term in brackets in Equation 11).

EXAMPLE 11  

The Present Value of an Ordinary Annuity
Suppose you are considering purchasing a financial asset that promises to pay 
€1,000 per year for five years, with the first payment one year from now. The 
required rate of return is 12 percent per year. How much should you pay for 
this asset?

(10)

(11)
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Solution:
To find the value of the financial asset, use the formula for the present value of 
an ordinary annuity given in Equation 11 with the following data:

 A = €1,000
 r = 12% = 0.12
 N = 5

 PV = A
r

r

N1 1

1
�

�� �
�

�

�
�
�
�
�

�

�

�
�
�
�
�

  = €1,000

1 1

1 12
0 12

5�
� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

.
.

  = €1,000(3.604776)
  = €3,604.78

The series of cash flows of €1,000 per year for five years is currently worth 
€3,604.78 when discounted at 12 percent.

Keeping track of the actual calendar time brings us to a specific type of annuity 
with level payments: the annuity due. An annuity due has its first payment occurring 
today (t = 0). In total, the annuity due will make N payments. Figure 6 presents the 
time line for an annuity due that makes four payments of $100.

Figure 6   An Annuity Due of $100 per Period

| | | |
0 1 2 3

$100 $100 $100 $100

As Figure 6 shows, we can view the four- period annuity due as the sum of two 
parts: a $100 lump sum today and an ordinary annuity of $100 per period for three 
periods. At a 12 percent discount rate, the four $100 cash flows in this annuity due 
example will be worth $340.18.7

Expressing the value of the future series of cash flows in today’s dollars gives us a 
convenient way of comparing annuities. The next example illustrates this approach.

7 There is an alternative way to calculate the present value of an annuity due. Compared to an ordinary 
annuity, the payments in an annuity due are each discounted one less period. Therefore, we can modify 
Equation 11 to handle annuities due by multiplying the right- hand side of the equation by (1 + r):

PV Annuity due� � � ��� ��� �� �� � � ��A r r rN1 1 1
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EXAMPLE 12  

An Annuity Due as the Present Value of an Immediate 
Cash Flow Plus an Ordinary Annuity
You are retiring today and must choose to take your retirement benefits either as 
a lump sum or as an annuity. Your company’s benefits officer presents you with 
two alternatives: an immediate lump sum of $2 million or an annuity with 20 
payments of $200,000 a year with the first payment starting today. The interest 
rate at your bank is 7 percent per year compounded annually. Which option has 
the greater present value? (Ignore any tax differences between the two options.)

Solution:
To compare the two options, find the present value of each at time t = 0 and 
choose the one with the larger value. The first option’s present value is $2 mil-
lion, already expressed in today’s dollars. The second option is an annuity due. 
Because the first payment occurs at t = 0, you can separate the annuity benefits 
into two pieces: an immediate $200,000 to be paid today (t = 0) and an ordi-
nary annuity of $200,000 per year for 19 years. To value this option, you need 
to find the present value of the ordinary annuity using Equation 11 and then 
add $200,000 to it.

A
N
r

A
r

r

N

�
�
� �

�

�
�� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

$

.

$

200,000

%

PV

200,0

19
7 0 07

1 1

1

000

200,000 10.335595
2,06

1 1

1 07
0 07

19�
� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

� � �
�

.
.

$
$ 77,119.05

The 19 payments of $200,000 have a present value of $2,067,119.05. Adding the 
initial payment of $200,000 to $2,067,119.05, we find that the total value of the 
annuity option is $2,267,119.05. The present value of the annuity is greater than 
the lump sum alternative of $2 million.

We now look at another example reiterating the equivalence of present and future 
values.

EXAMPLE 13  

The Projected Present Value of an Ordinary Annuity
A German pension fund manager anticipates that benefits of €1 million per year 
must be paid to retirees. Retirements will not occur until 10 years from now 
at time t = 10. Once benefits begin to be paid, they will extend until t = 39 for 
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a total of 30 payments. What is the present value of the pension liability if the 
appropriate annual discount rate for plan liabilities is 5 percent compounded 
annually?

Solution:
This problem involves an annuity with the first payment at t = 10. From the 
perspective of t = 9, we have an ordinary annuity with 30 payments. We can 
compute the present value of this annuity with Equation 11 and then look at it 
on a time line.

 A = €1,000,000
 r = 5% = 0.05
 N = 30

 PV = A
r

r

N1 1

1
�

�� �
�

�

�
�
�
�
�

�

�

�
�
�
�
�

  = €1,000,000

1 1

1 05
0 05

30�
� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

.
.

  = €1,000,000(15.372451)
  = €15,372,451.03

Figure 7   The Present Value of an Ordinary Annuity with First Payment 
at Time t = 10 (in Millions) 

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 10 11           12 . . . . . . . . . . . . . . . . . . . . 39

1 . . . . . . . . . . . . . . . . . . 1 1 1

On the time line, we have shown the pension payments of €1 million extend-
ing from t = 10 to t = 39. The bracket and arrow indicate the process of finding 
the present value of the annuity, discounted back to t = 9. The present value 
of the pension benefits as of t = 9 is €15,372,451.03. The problem is to find the 
present value today (at t = 0).
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Now we can rely on the equivalence of present value and future value. As 
Figure 7 shows, we can view the amount at t = 9 as a future value from the vantage 
point of t = 0. We compute the present value of the amount at t = 9 as follows:

 FVN = €15,372,451.03 (the present value at t = 9)
 N = 9
 r = 5% = 0.05
 PV = FVN(1 + r)–N

  = €15,372,451.03(1.05)–9

  = €15,372,451.03(0.644609)
  = €9,909,219.00

The present value of the pension liability is €9,909,219.00.

Example 13 illustrates three procedures emphasized in this reading:

■■ finding the present or future value of any cash flow series;
■■ recognizing the equivalence of present value and appropriately discounted 

future value; and
■■ keeping track of the actual calendar time in a problem involving the time value 

of money.

9.2 The Present Value of a Series of Unequal Cash Flows
When we have unequal cash flows, we must first find the present value of each indi-
vidual cash flow and then sum the respective present values. For a series with many 
cash flows, we usually use a spreadsheet. Table 3 lists a series of cash flows with the 
time periods in the first column, cash flows in the second column, and each cash 
flow’s present value in the third column. The last row of Table 3 shows the sum of 
the five present values.

Table 3   A Series of Unequal Cash Flows and Their Present 
Values at 5 Percent

Time Period Cash Flow ($) Present Value at Year 0

1 1,000 $1,000(1.05)−1 = $952.38
2 2,000 $2,000(1.05)−2 = $1,814.06
3 4,000 $4,000(1.05)−3 = $3,455.35
4 5,000 $5,000(1.05)−4 = $4,113.51
5 6,000 $6,000(1.05)−5 = $4,701.16

Sum = $15,036.46
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We could calculate the future value of these cash flows by computing them one at a 
time using the single- payment future value formula. We already know the present value 
of this series, however, so we can easily apply time- value equivalence. The future value 
of the series of cash flows from Table 2, $19,190.76, is equal to the single $15,036.46 
amount compounded forward to t = 5:

PV 15,036.46

FV PV

15,036.46 1.05

1

�
�
� �

� �� �
� � �
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$

% .

$
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N
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rN
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1
5

55,036.46 1.276282
19,190.76

� �
� $

PRESENT VALUE OF A PERPETUITY AND PRESENT 
VALUES INDEXED AT TIMES OTHER THAN T=0

e calculate and interpret the future value (FV) and present value (PV) of a single 
sum of money, an ordinary annuity, an annuity due, a perpetuity (PV only), and 
a series of unequal cash flows; 

Consider the case of an ordinary annuity that extends indefinitely. Such an ordinary 
annuity is called a perpetuity (a perpetual annuity). To derive a formula for the present 
value of a perpetuity, we can modify Equation 10 to account for an infinite series of 
cash flows:

PV �
�� �
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�
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r t
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11

As long as interest rates are positive, the sum of present value factors converges and

PV =
A
r

To see this, look back at Equation 11, the expression for the present value of an ordi-
nary annuity. As N (the number of periods in the annuity) goes to infinity, the term 
1/(1 + r)N approaches 0 and Equation 11 simplifies to Equation 13. This equation will 
reappear when we value dividends from stocks because stocks have no predefined 
life span. (A stock paying constant dividends is similar to a perpetuity.) With the first 
payment a year from now, a perpetuity of $10 per year with a 20 percent required 
rate of return has a present value of $10/0.2 = $50.

Equation 13 is valid only for a perpetuity with level payments. In our development 
above, the first payment occurred at t = 1; therefore, we compute the present value 
as of t = 0.

Other assets also come close to satisfying the assumptions of a perpetuity. Certain 
government bonds and preferred stocks are typical examples of financial assets that 
make level payments for an indefinite period of time.

10

(12)

(13)
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EXAMPLE 14  

The Present Value of a Perpetuity
The British government once issued a type of security called a consol bond, 
which promised to pay a level cash flow indefinitely. If a consol bond paid £100 
per year in perpetuity, what would it be worth today if the required rate of 
return were 5 percent?

Solution:
To answer this question, we can use Equation 13 with the following data:

A
r

A r

=
= =
=
=
=

£
% .

£ .
£ ,

100
5 0 05

100 0 05
2 000

PV

The bond would be worth £2,000.

10.1 Present Values Indexed at Times Other than t = 0
In practice with investments, analysts frequently need to find present values indexed 
at times other than t = 0. Subscripting the present value and evaluating a perpetuity 
beginning with $100 payments in Year 2, we find PV1 = $100/0.05 = $2,000 at a 5 percent 
discount rate. Further, we can calculate today’s PV as PV0 = $2,000/1.05 = $1,904.76.

Consider a similar situation in which cash flows of $6 per year begin at the end 
of the 4th year and continue at the end of each year thereafter, with the last cash 
flow at the end of the 10th year. From the perspective of the end of the third year, 
we are facing a typical seven- year ordinary annuity. We can find the present value of 
the annuity from the perspective of the end of the third year and then discount that 
present value back to the present. At an interest rate of 5 percent, the cash flows of 
$6 per year starting at the end of the fourth year will be worth $34.72 at the end of 
the third year (t = 3) and $29.99 today (t = 0).

The next example illustrates the important concept that an annuity or perpetuity 
beginning sometime in the future can be expressed in present value terms one period 
prior to the first payment. That present value can then be discounted back to today’s 
present value.

EXAMPLE 15  

The Present Value of a Projected Perpetuity
Consider a level perpetuity of £100 per year with its first payment beginning at 
t = 5. What is its present value today (at t = 0), given a 5 percent discount rate?

Solution:
First, we find the present value of the perpetuity at t = 4 and then discount that 
amount back to t = 0. (Recall that a perpetuity or an ordinary annuity has its 
first payment one period away, explaining the t = 4 index for our present value 
calculation.)

 i. Find the present value of the perpetuity at t = 4:
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A
r

A r

=
= =
=
=
=

£
% .

£ .
£ ,

100
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2 000

PV

 ii. Find the present value of the future amount at t = 4. From the perspective 
of t = 0, the present value of £2,000 can be considered a future value. Now 
we need to find the present value of a lump sum:

FV  the present value at 4

PV FV

N

N

t
r

N

r
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£ , ( )
% .
2 000

5 0 05
4

1�� �
� � �
� � �
�

�
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£ , .

£ , .
£ , .

2 000 1 05

2 000 0 822702
1 645 40

4

Today’s present value of the perpetuity is £1,645.40.

As discussed earlier, an annuity is a series of payments of a fixed amount for a 
specified number of periods. Suppose we own a perpetuity. At the same time, we 
issue a perpetuity obligating us to make payments; these payments are the same size 
as those of the perpetuity we own. However, the first payment of the perpetuity we 
issue is at t = 5; payments then continue on forever. The payments on this second 
perpetuity exactly offset the payments received from the perpetuity we own at t = 5 
and all subsequent dates. We are left with level nonzero net cash flows at t = 1, 2, 3, 
and 4. This outcome exactly fits the definition of an annuity with four payments. Thus 
we can construct an annuity as the difference between two perpetuities with equal, 
level payments but differing starting dates. The next example illustrates this result.

EXAMPLE 16  

The Present Value of an Ordinary Annuity as the Present 
Value of a Current Minus Projected Perpetuity
Given a 5 percent discount rate, find the present value of a four- year ordinary 
annuity of £100 per year starting in Year 1 as the difference between the following 
two level perpetuities:

Perpetuity 1 £100 per year starting in Year 1 (first payment at t = 1)
Perpetuity 2 £100 per year starting in Year 5 (first payment at t = 5)
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Solution:
If we subtract Perpetuity 2 from Perpetuity 1, we are left with an ordinary annuity 
of £100 per period for four years (payments at t = 1, 2, 3, 4). Subtracting the 
present value of Perpetuity 2 from that of Perpetuity 1, we arrive at the present 
value of the four- year ordinary annuity:

PV Perpetuity 1

PV Perpetuity 2
0

4

100 0 05 2 000

100 0
� � � �

� � �
£ / . £ ,

£ / .. £ ,

£ , / . £ , .

05 2 000

2 000 1 05 1 645 400
4

0

�

� � � � � �PV Perpetuity 2

PV Annnuity PV Perpetuity 1 PV Perpetuity 2� � � � � � � �
� �

0 0

2 000 1 645£ , £ , ..
£ .

40
354 60�

The four- year ordinary annuity’s present value is equal to £2,000 – £1,645.40 = 
£354.60.

SOLVING FOR INTEREST RATES, GROWTH RATES, AND 
NUMBER OF PERIODS

e calculate and interpret the future value (FV) and present value (PV) of a single 
sum of money, an ordinary annuity, an annuity due, a perpetuity (PV only), and 
a series of unequal cash flows; 

In the previous examples, certain pieces of information have been made available. 
For instance, all problems have given the rate of interest, r, the number of time peri-
ods, N, the annuity amount, A, and either the present value, PV, or future value, FV. 
In real- world applications, however, although the present and future values may be 
given, you may have to solve for either the interest rate, the number of periods, or 
the annuity amount. In the subsections that follow, we show these types of problems.

11.1 Solving for Interest Rates and Growth Rates
Suppose a bank deposit of €100 is known to generate a payoff of €111 in one year. 
With this information, we can infer the interest rate that separates the present value 
of €100 from the future value of €111 by using Equation 2, FVN = PV(1 + r)N, with N 
= 1. With PV, FV, and N known, we can solve for r directly:

 1 + r = FV/PV
 1 + r = €111/€100 = 1.11
 r = 0.11, or 11%

The interest rate that equates €100 at t = 0 to €111 at t = 1 is 11 percent. Thus we can 
state that €100 grows to €111 with a growth rate of 11 percent.

As this example shows, an interest rate can also be considered a growth rate. The 
particular application will usually dictate whether we use the term “interest rate” or 
“growth rate.” Solving Equation 2 for r and replacing the interest rate r with the growth 
rate g produces the following expression for determining growth rates:

g = (FVN/PV)1/N – 1  

Below are two examples that use the concept of a growth rate.

11

(14)
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EXAMPLE 17  

Calculating a Growth Rate (1)
Hyundai Steel, the first Korean steelmaker, was established in 1953. Hyundai 
Steel’s sales increased from ₩14,146.4 billion in 2012 to ₩19,166.0 billion in 2017. 
However, its net profit declined from ₩796.4 billion in 2012 to ₩727.5 billion 
in 2017. Calculate the following growth rates for Hyundai Steel for the five- year 
period from the end of 2012 to the end of 2017:

1 Sales growth rate.
2 Net profit growth rate.

Solution to 1:
To solve this problem, we can use Equation 14, g = (FVN/PV)1/N – 1. We denote 
sales in 2012 as PV and sales in 2017 as FV5. We can then solve for the growth 
rate as follows:

g � �

� �
� �
�

W W

 or

19 166 0 14 146 4 1

1 354832 1
1 062618 1
0 062618

5

5

, . , .

.
.
.   about 6 3. %

The calculated growth rate of about 6.3 percent a year shows that Hyundai Steel’s 
sales grew during the 2012–2017 period.

Solution to 2:
In this case, we can speak of a positive compound rate of decrease or a negative 
compound growth rate. Using Equation 14, we find

g � �

� �
� �
� �

W W

 or abou

727 5 796 4 1

0 913486 1
0 982065 1

0 017935

5

5

. .

.
.

. tt �1 8. %

In contrast to the positive sales growth, the rate of growth in net profit was 
approximately –1.8 percent during the 2012–2017 period.

EXAMPLE 18  

Calculating a Growth Rate (2)
Toyota Motor Corporation, one of the largest automakers in the world, had 
consolidated vehicle sales of 8.96 million units in 2018 (fiscal year ending 31 
March  2018). This is substantially more than consolidated vehicle sales of 
7.35 million units six years earlier in 2012. What was the growth rate in number 
of vehicles sold by Toyota from 2012 to 2018?
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Solution:
Using Equation 14, we find

g � �

� �
� �
�

8 96 7 35 1

1 219048 1
1 033563 1
0 033563 3 4

6

6

. .

.
.
. . or about %%

The rate of growth in vehicles sold was approximately 3.4 percent during the 
2012–2018 period. Note that we can also refer to 3.4 percent as the compound 
annual growth rate because it is the single number that compounds the number 
of vehicles sold in 2012 forward to the number of vehicles sold in 2018. Table 4 
lists the number of vehicles sold by Toyota from 2012 to 2018.

Table 4   Number of Vehicles Sold, 2012–2018

Year
Number of Vehicles 

Sold (Millions) (1 + g)t t

2012 7.35 0

2013 8.87 8.87/7.35 = 1.206803 1
2014 9.12 9.12/8.87 = 1.028185 2
2015 8.97 8.97/9.12 = 0.983553 3
2016 8.68 8.68/8.97 = 0.967670 4
2017 8.97 8.97/8.68 = 1.033410 5
2018 8.96 8.96/8.97 = 0.998885 6

Source: www.toyota.com.

Table 4 also shows 1 plus the one- year growth rate in number of vehicles sold. 
We can compute the 1 plus six- year cumulative growth in number of vehicles 
sold from 2012 to 2018 as the product of quantities (1 + one- year growth rate). 
We arrive at the same result as when we divide the ending number of vehicles 
sold, 8.96 million, by the beginning number of vehicles sold, 7.35 million:
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� � �� � �� �

� � �� �� �
g g

. . . . . 667670 1 033410 0 998885� �� �� �. .

The right- hand side of the equation is the product of 1 plus the one- year growth 
rate in number of vehicles sold for each year. Recall that, using Equation 14, we 
took the sixth root of 8.96/7.35 = 1.219048. In effect, we were solving for the 
single value of g which, when compounded over six periods, gives the correct 
product of 1 plus the one- year growth rates.8

In conclusion, we do not need to compute intermediate growth rates as in 
Table 4 to solve for a compound growth rate g. Sometimes, however, the inter-
mediate growth rates are interesting or informative. For example, most of the 
21.9 percent increase in vehicles sold by Toyota from 2012 to 2018 occurred in 

8 The compound growth rate that we calculate here is an example of a geometric mean, specifically the 
geometric mean of the growth rates. We define the geometric mean in the reading on statistical concepts.
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2013 as sales increased by 20.7 percent from 2012 to 2013. Elsewhere in Toyota 
Motor’s disclosures, the company noted that all regions except Europe showed a 
substantial increase in sales in 2013. We can also analyze the variability in growth 
rates when we conduct an analysis as in Table 4. Sales continued to increase in 
2014 but then declined in 2015 and 2016. Sales then increased but the sales in 
2017 and 2018 are about the same as in 2015. 

The compound growth rate is an excellent summary measure of growth over 
multiple time periods. In our Toyota Motors example, the compound growth rate 
of 3.4 percent is the single growth rate that, when added to 1, compounded over six 
years, and multiplied by the 2012 number of vehicles sold, yields the 2018 number 
of vehicles sold.

11.2 Solving for the Number of Periods
In this section, we demonstrate how to solve for the number of periods given present 
value, future value, and interest or growth rates.

EXAMPLE 19  

The Number of Annual Compounding Periods Needed for 
an Investment to Reach a Specific Value
You are interested in determining how long it will take an investment of 
€10,000,000 to double in value. The current interest rate is 7 percent compounded 
annually. How many years will it take €10,000,000 to double to €20,000,000?

Solution:
Use Equation 2, FVN = PV(1 + r)N, to solve for the number of periods, N, as 
follows:

1 2

1 2

2 1

2 1 07

�� � � �

�� � � � �
� � � �� �
� � � � � �

r

N r

N r

N
NFV PV

 ln ln

ln ln

ln ln . 110 24.

With an interest rate of 7 percent, it will take approximately 10 years for the initial 
€10,000,000 investment to grow to €20,000,000. Solving for N in the expression 
(1.07)N = 2.0 requires taking the natural logarithm of both sides and using the 
rule that ln(xN) = N ln(x). Generally, we find that N = [ln(FV/PV)]/ln(1 + r). 
Here, N = ln(€20,000,000/€10,000,000)/ln(1.07) = ln(2)/ln(1.07) = 10.24.9

9 To quickly approximate the number of periods, practitioners sometimes use an ad hoc rule called the 
Rule of 72: Divide 72 by the stated interest rate to get the approximate number of years it would take to 
double an investment at the interest rate. Here, the approximation gives 72/7 = 10.3 years. The Rule of 72 
is loosely based on the observation that it takes 12 years to double an amount at a 6 percent interest rate, 
giving 6 × 12 = 72. At a 3 percent rate, one would guess it would take twice as many years, 3 × 24 = 72.
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SOLVING FOR SIZE OF ANNUITY PAYMENTS 
(COMBINING FUTURE VALUE AND PRESENT VALUE 
ANNUITIES)

e calculate and interpret the future value (FV) and present value (PV) of a single 
sum of money, an ordinary annuity, an annuity due, a perpetuity (PV only), and 
a series of unequal cash flows; 

f demonstrate the use of a time line in modeling and solving time value of money 
problems.

In this section, we discuss how to solve for annuity payments. Mortgages, auto loans, 
and retirement savings plans are classic examples of applications of annuity formulas.

EXAMPLE 20  

Calculating the Size of Payments on a Fixed- Rate 
Mortgage
You are planning to purchase a $120,000 house by making a down payment of 
$20,000 and borrowing the remainder with a 30- year fixed- rate mortgage with 
monthly payments. The first payment is due at t = 1. Current mortgage inter-
est rates are quoted at 8 percent with monthly compounding. What will your 
monthly mortgage payments be?

Solution:
The bank will determine the mortgage payments such that at the stated periodic 
interest rate, the present value of the payments will be equal to the amount 
borrowed (in this case, $100,000). With this fact in mind, we can use 

Equation 11, PV �

�
�� �
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�

�
�
�

�

�

�
�
�A

r
r

N1 1

1
, to solve for the annuity amount, A, as the 

present value divided by the present value annuity factor:
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The amount borrowed, $100,000, is equivalent to 360 monthly payments of 
$733.76 with a stated interest rate of 8 percent. The mortgage problem is a rel-
atively straightforward application of finding a level annuity payment.

Next, we turn to a retirement- planning problem. This problem illustrates the 
complexity of the situation in which an individual wants to retire with a specified 
retirement income. Over the course of a life cycle, the individual may be able to save 
only a small amount during the early years but then may have the financial resources 
to save more during later years. Savings plans often involve uneven cash flows, a topic 
we will examine in the last part of this reading. When dealing with uneven cash flows, 
we take maximum advantage of the principle that dollar amounts indexed at the same 
point in time are additive—the cash flow additivity principle.

EXAMPLE 21  

The Projected Annuity Amount Needed to Fund a Future- 
Annuity Inflow
Jill Grant is 22 years old (at t = 0) and is planning for her retirement at age 63 
(at t = 41). She plans to save $2,000 per year for the next 15 years (t = 1 to t = 
15). She wants to have retirement income of $100,000 per year for 20 years, 
with the first retirement payment starting at t = 41. How much must Grant save 
each year from t = 16 to t = 40 in order to achieve her retirement goal? Assume 
she plans to invest in a diversified stock- and- bond mutual fund that will earn 
8 percent per year on average.

Solution:
To help solve this problem, we set up the information on a time line. As Figure 8 
shows, Grant will save $2,000 (an outflow) each year for Years 1 to 15. Starting 
in Year 41, Grant will start to draw retirement income of $100,000 per year for 
20 years. In the time line, the annual savings is recorded in parentheses ($2) 
to show that it is an outflow. The problem is to find the savings, recorded as X, 
from Year 16 to Year 40.

Figure 8   Solving for Missing Annuity Payments (in Thousands) 

 |  |  |       |  |  |       |  |    |        |
 0  1  2 15 16 17 40 41 42 60

    ($2)      ($2)  ... ($2)      (X)       (X)  ...  (X) $100 $100 ... $100

... ... ...

Solving this problem involves satisfying the following relationship: the present 
value of savings (outflows) equals the present value of retirement income (inflows). 
We could bring all the dollar amounts to t = 40 or to t = 15 and solve for X.

Let us evaluate all dollar amounts at t = 15 (we encourage the reader to 
repeat the problem by bringing all cash flows to t = 40). As of t = 15, the first 
payment of X will be one period away (at t = 16). Thus we can value the stream 
of Xs using the formula for the present value of an ordinary annuity.
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This problem involves three series of level cash flows. The basic idea is that 
the present value of the retirement income must equal the present value of 
Grant’s savings. Our strategy requires the following steps:

1 Find the future value of the savings of $2,000 per year and index it at t = 
15. This value tells us how much Grant will have saved.

2 Find the present value of the retirement income at t = 15. This value tells 
us how much Grant needs to meet her retirement goals (as of t = 15). Two 
substeps are necessary. First, calculate the present value of the annuity of 
$100,000 per year at t = 40. Use the formula for the present value of an 
annuity. (Note that the present value is indexed at t = 40 because the first 
payment is at t = 41.) Next, discount the present value back to t = 15 (a 
total of 25 periods).

3 Now compute the difference between the amount Grant has saved (Step 
1) and the amount she needs to meet her retirement goals (Step 2). Her 
savings from t = 16 to t = 40 must have a present value equal to the differ-
ence between the future value of her savings and the present value of her 
retirement income.

Our goal is to determine the amount Grant should save in each of the 25 years 
from t = 16 to t = 40. We start by bringing the $2,000 savings to t = 15, as follows:
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At t = 15, Grant’s initial savings will have grown to $54,304.23.
Now we need to know the value of Grant’s retirement income at t = 15. As 

stated earlier, computing the retirement present value requires two substeps. 
First, find the present value at t = 40 with the formula in Equation 11; second, 
discount this present value back to t = 15. Now we can find the retirement 
income present value at t = 40:
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The present value amount is as of t = 40, so we must now discount it back as a 
lump sum to t = 15:
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Now recall that Grant will have saved $54,304.23 by t = 15. Therefore, in 
present value terms, the annuity from t = 16 to t = 40 must equal the difference 
between the amount already saved ($54,304.23) and the amount required for 
retirement ($143,362.53). This amount is equal to $143,362.53 − $54,304.23 = 
$89,058.30. Therefore, we must now find the annuity payment, A, from t = 16 
to t = 40 that has a present value of $89,058.30. We find the annuity payment 
as follows:
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Grant will need to increase her savings to $8,342.87 per year from t = 16 to t 
= 40 to meet her retirement goal of having a fund equal to $981,814.74 after 
making her last payment at t = 40.

PRESENT VALUE AND FUTURE VALUE EQUIVALENCE, 
ADDITIVITY PRINCIPLE

e calculate and interpret the future value (FV) and present value (PV) of a single 
sum of money, an ordinary annuity, an annuity due, a perpetuity (PV only), and 
a series of unequal cash flows; 

f demonstrate the use of a time line in modeling and solving time value of money 
problems.

13
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As we have demonstrated, finding present and future values involves moving amounts 
of money to different points on a time line. These operations are possible because 
present value and future value are equivalent measures separated in time. Table 5 
illustrates this equivalence; it lists the timing of five cash flows, their present values 
at t = 0, and their future values at t = 5.

To interpret Table 5, start with the third column, which shows the present values. 
Note that each $1,000 cash payment is discounted back the appropriate number of 
periods to find the present value at t = 0. The present value of $4,329.48 is exactly 
equivalent to the series of cash flows. This information illustrates an important point: 
A lump sum can actually generate an annuity. If we place a lump sum in an account 
that earns the stated interest rate for all periods, we can generate an annuity that is 
equivalent to the lump sum. Amortized loans, such as mortgages and car loans, are 
examples of this principle.

Table 5   The Equivalence of Present and Future Values

Time Cash Flow ($) Present Value at t = 0 Future Value at t = 5

1 1,000 $1,000(1.05)−1 = $952.38 $1,000(1.05)4 = $1,215.51

2 1,000 $1,000(1.05)−2 = $907.03 $1,000(1.05)3 = $1,157.63

3 1,000 $1,000(1.05)−3 = $863.84 $1,000(1.05)2 = $1,102.50

4 1,000 $1,000(1.05)−4 = $822.70 $1,000(1.05)1 = $1,050.00

5 1,000 $1,000(1.05)−5 = $783.53 $1,000(1.05)0 = $1,000.00

Sum: $4,329.48 Sum: $5,525.64

To see how a lump sum can fund an annuity, assume that we place $4,329.48 in the 
bank today at 5 percent interest. We can calculate the size of the annuity payments 
by using Equation 11. Solving for A, we find

A
r

r

N
�

� �� ��
��

�
��

�
� � ��
��

�
��

�

PV

1 1 1

4 329 48

1 1 1 05

0 05
1 000

5
$ , .

.

.
$ ,

Table 6 shows how the initial investment of $4,329.48 can actually generate five $1,000 
withdrawals over the next five years.

To interpret Table 6, start with an initial present value of $4,329.48 at t = 0. From 
t = 0 to t = 1, the initial investment earns 5 percent interest, generating a future value 
of $4,329.48(1.05) = $4,545.95. We then withdraw $1,000 from our account, leaving 
$4,545.95 − $1,000 = $3,545.95 (the figure reported in the last column for time period 
1). In the next period, we earn one year’s worth of interest and then make a $1,000 
withdrawal. After the fourth withdrawal, we have $952.38, which earns 5  percent. 
This amount then grows to $1,000 during the year, just enough for us to make the 
last withdrawal. Thus the initial present value, when invested at 5  percent for five 
years, generates the $1,000 five- year ordinary annuity. The present value of the initial 
investment is exactly equivalent to the annuity.
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Now we can look at how future value relates to annuities. In Table 5, we reported 
that the future value of the annuity was $5,525.64. We arrived at this figure by com-
pounding the first $1,000 payment forward four periods, the second $1,000 forward 
three periods, and so on. We then added the five future amounts at t = 5. The annuity 
is equivalent to $5,525.64 at t = 5 and $4,329.48 at t = 0. These two dollar measures 
are thus equivalent. We can verify the equivalence by finding the present value of 
$5,525.64, which is $5,525.64 × (1.05)−5 = $4,329.48. We found this result above when 
we showed that a lump sum can generate an annuity.

Table 6   How an Initial Present Value Funds an Annuity

Time 
Period

Amount Available 
at the Beginning of 
the Time Period ($) Ending Amount before Withdrawal Withdrawal ($)

Amount Available 
after Withdrawal ($)

1 4,329.48 $4,329.48(1.05) = $4,545.95 1,000 3,545.95
2 3,545.95 $3,545.95(1.05) = $3,723.25 1,000 2,723.25
3 2,723.25 $2,723.25(1.05) = $2,859.41 1,000 1,859.41
4 1,859.41 $1,859.41(1.05) = $1,952.38 1,000 952.38
5 952.38 $952.38(1.05) = $1,000 1,000 0

To summarize what we have learned so far: A lump sum can be seen as equivalent 
to an annuity, and an annuity can be seen as equivalent to its future value. Thus present 
values, future values, and a series of cash flows can all be considered equivalent as 
long as they are indexed at the same point in time.

13.1 The Cash Flow Additivity Principle
The cash flow additivity principle—the idea that amounts of money indexed at the 
same point in time are additive—is one of the most important concepts in time value of 
money mathematics. We have already mentioned and used this principle; this section 
provides a reference example for it.

Consider the two series of cash flows shown on the time line in Figure 9. The series 
are denoted A and B. If we assume that the annual interest rate is 2 percent, we can 
find the future value of each series of cash flows as follows. Series A’s future value is 
$100(1.02) + $100 = $202. Series B’s future value is $200(1.02) + $200 = $404. The 
future value of (A + B) is $202 + $404 = $606 by the method we have used up to this 
point. The alternative way to find the future value is to add the cash flows of each 
series, A and B (call it A + B), and then find the future value of the combined cash 
flow, as shown in Figure 9.

The third time line in Figure 9 shows the combined series of cash flows. Series 
A has a cash flow of $100 at t = 1, and Series B has a cash flow of $200 at t = 1. The 
combined series thus has a cash flow of $300 at t = 1. We can similarly calculate the 
cash flow of the combined series at t = 2. The future value of the combined series 
(A + B) is $300(1.02) + $300 = $606—the same result we found when we added the 
future values of each series.

The additivity and equivalence principles also appear in another common situa-
tion. Suppose cash flows are $4 at the end of the first year and $24 (actually separate 
payments of $4 and $20) at the end of the second year. Rather than finding present 
values of the first year’s $4 and the second year’s $24, we can treat this situation as a 
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$4 annuity for two years and a second- year $20 lump sum. If the discount rate were 
6 percent, the $4 annuity would have a present value of $7.33 and the $20 lump sum 
a present value of $17.80, for a total of $25.13.

Figure 9   The Additivity of Two Series of Cash Flows

t = 0 t = 1 t = 2

A
$100 $100

t = 0 t = 1 t = 2

B
$200 $200

t = 0 t = 1 t = 2

A + B
$300 $300

SUMMARY
In this reading, we have explored a foundation topic in investment mathematics, the 
time value of money. We have developed and reviewed the following concepts for use 
in financial applications:

■■ The interest rate, r, is the required rate of return; r is also called the discount 
rate or opportunity cost.

■■ An interest rate can be viewed as the sum of the real risk- free interest rate and 
a set of premiums that compensate lenders for risk: an inflation premium, a 
default risk premium, a liquidity premium, and a maturity premium.

■■ The future value, FV, is the present value, PV, times the future value factor, (1 + 
r)N.

■■ The interest rate, r, makes current and future currency amounts equivalent 
based on their time value.

■■ The stated annual interest rate is a quoted interest rate that does not account 
for compounding within the year.

■■ The periodic rate is the quoted interest rate per period; it equals the stated 
annual interest rate divided by the number of compounding periods per year.

■■ The effective annual rate is the amount by which a unit of currency will grow in 
a year with interest on interest included.

■■ An annuity is a finite set of level sequential cash flows.
■■ There are two types of annuities, the annuity due and the ordinary annuity. The 

annuity due has a first cash flow that occurs immediately; the ordinary annuity 
has a first cash flow that occurs one period from the present (indexed at t = 1).
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■■ On a time line, we can index the present as 0 and then display equally spaced 
hash marks to represent a number of periods into the future. This representa-
tion allows us to index how many periods away each cash flow will be paid.

■■ Annuities may be handled in a similar approach as single payments if we use 
annuity factors rather than single- payment factors.

■■ The present value, PV, is the future value, FV, times the present value factor, 
(1 + r)−N.

■■ The present value of a perpetuity is A/r, where A is the periodic payment to be 
received forever.

■■ It is possible to calculate an unknown variable, given the other relevant vari-
ables in time value of money problems.

■■ The cash flow additivity principle can be used to solve problems with uneven 
cash flows by combining single payments and annuities.
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PRACTICE PROBLEMS

1 The table below gives current information on the interest rates for two two- 
year and two eight- year maturity investments. The table also gives the matu-
rity, liquidity, and default risk characteristics of a new investment possibility 
(Investment 3). All investments promise only a single payment (a payment at 
maturity). Assume that premiums relating to inflation, liquidity, and default risk 
are constant across all time horizons.

Investment Maturity (in Years) Liquidity Default Risk Interest Rate (%)

1 2 High Low 2.0
2 2 Low Low 2.5
3 7 Low Low r3

4 8 High Low 4.0
5 8 Low High 6.5

 Based on the information in the above table, address the following:
A Explain the difference between the interest rates on Investment 1 and 

Investment 2.
B Estimate the default risk premium.
C Calculate upper and lower limits for the interest rate on Investment 3, r3.

2 A couple plans to set aside $20,000 per year in a conservative portfolio pro-
jected to earn 7 percent a year. If they make their first savings contribution one 
year from now, how much will they have at the end of 20 years?

3 Two years from now, a client will receive the first of three annual payments of 
$20,000 from a small business project. If she can earn 9 percent annually on her 
investments and plans to retire in six years, how much will the three business 
project payments be worth at the time of her retirement?

4 To cover the first year’s total college tuition payments for his two children, a 
father will make a $75,000 payment five years from now. How much will he 
need to invest today to meet his first tuition goal if the investment earns 6 per-
cent annually?

5 A client can choose between receiving 10 annual $100,000 retirement pay-
ments, starting one year from today, or receiving a lump sum today. Knowing 
that he can invest at a rate of 5 percent annually, he has decided to take the 
lump sum. What lump sum today will be equivalent to the future annual 
payments?

6 You are considering investing in two different instruments. The first instrument 
will pay nothing for three years, but then it will pay $20,000 per year for four 
years. The second instrument will pay $20,000 for three years and $30,000 in 
the fourth year. All payments are made at year- end. If your required rate of 
return on these investments is 8 percent annually, what should you be willing to 
pay for:
A The first instrument?
B The second instrument (use the formula for a four- year annuity)?

© 2016 CFA Institute. All rights reserved.
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7 Suppose you plan to send your daughter to college in three years. You expect 
her to earn two- thirds of her tuition payment in scholarship money, so you 
estimate that your payments will be $10,000 a year for four years. To estimate 
whether you have set aside enough money, you ignore possible inflation in 
tuition payments and assume that you can earn 8 percent annually on your 
investments. How much should you set aside now to cover these payments?

8 A client plans to send a child to college for four years starting 18 years from 
now. Having set aside money for tuition, she decides to plan for room and 
board also. She estimates these costs at $20,000 per year, payable at the begin-
ning of each year, by the time her child goes to college. If she starts next year 
and makes 17 payments into a savings account paying 5 percent annually, what 
annual payments must she make?

9 A couple plans to pay their child’s college tuition for 4 years starting 18 years 
from now. The current annual cost of college is C$7,000, and they expect this 
cost to rise at an annual rate of 5 percent. In their planning, they assume that 
they can earn 6 percent annually. How much must they put aside each year, 
starting next year, if they plan to make 17 equal payments?

10 The nominal risk- free rate is best described as the sum of the real risk- free rate 
and a premium for:
A maturity.
B liquidity.
C expected inflation.

11 Which of the following risk premiums is most relevant in explaining the differ-
ence in yields between 30- year bonds issued by the US Treasury and 30- year 
bonds issued by a small private issuer?
A Inflation
B Maturity
C Liquidity

12 A bank quotes a stated annual interest rate of 4.00%. If that rate is equal to an 
effective annual rate of 4.08%, then the bank is compounding interest:
A daily.
B quarterly.
C semiannually.

13 The value in six years of $75,000 invested today at a stated annual interest rate 
of 7% compounded quarterly is closest to:
A $112,555.
B $113,330.
C $113,733.

14 A client requires £100,000 one year from now. If the stated annual rate is 2.50% 
compounded weekly, the deposit needed today is closest to:
A £97,500.
B £97,532.
C £97,561.

15 For a lump sum investment of ¥250,000 invested at a stated annual rate of 
3% compounded daily, the number of months needed to grow the sum to 
¥1,000,000 is closest to:
A 555.
B 563.
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C 576.
16 Given a €1,000,000 investment for four years with a stated annual rate of 3% 

compounded continuously, the difference in its interest earnings compared with 
the same investment compounded daily is closest to:
A €1.
B €6.
C €455.

17 An investment pays €300 annually for five years, with the first payment occur-
ring today. The present value (PV) of the investment discounted at a 4% annual 
rate is closest to:
A €1,336.
B €1,389.
C €1,625.

18 A perpetual preferred stock makes its first quarterly dividend payment of $2.00 
in five quarters. If the required annual rate of return is 6% compounded quar-
terly, the stock’s present value is closest to:
A $31.
B $126.
C $133.

19 A saver deposits the following amounts in an account paying a stated annual 
rate of 4%, compounded semiannually:

Year End of Year Deposits ($)

1 4,000
2 8,000
3 7,000
4 10,000

 At the end of Year 4, the value of the account is closest to:
A $30,432
B $30,447
C $31,677

20 An investment of €500,000 today that grows to €800,000 after six years has a 
stated annual interest rate closest to:
A 7.5% compounded continuously.
B 7.7% compounded daily.
C 8.0% compounded semiannually.

21 A sweepstakes winner may select either a perpetuity of £2,000 a month begin-
ning with the first payment in one month or an immediate lump sum payment 
of £350,000. If the annual discount rate is 6% compounded monthly, the present 
value of the perpetuity is:
A less than the lump sum.
B equal to the lump sum.
C greater than the lump sum.

22 At a 5% interest rate per year compounded annually, the present value (PV) of a 
10- year ordinary annuity with annual payments of $2,000 is $15,443.47. The PV 
of a 10- year annuity due with the same interest rate and payments is closest to:
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A $14,708.
B $16,216.
C $17,443.

23 Grandparents are funding a newborn’s future university tuition costs, estimated 
at $50,000/year for four years, with the first payment due as a lump sum in 18 
years. Assuming a 6% effective annual rate, the required deposit today is closest 
to:
A $60,699.
B $64,341.
C $68,201.

24 The present value (PV) of an investment with the following year- end cash flows 
(CF) and a 12% required annual rate of return is closest to:

Year Cash Flow (€)

1 100,000
2 150,000
5 –10,000

A €201,747.
B €203,191.
C €227,573.

25 A sports car, purchased for £200,000, is financed for five years at an annual 
rate of 6% compounded monthly. If the first payment is due in one month, the 
monthly payment is closest to:
A £3,847.
B £3,867.
C £3,957.

26 Given a stated annual interest rate of 6% compounded quarterly, the level 
amount that, deposited quarterly, will grow to £25,000 at the end of 10 years is 
closest to:
A £461.
B £474.
C £836.

27 Given the following timeline and a discount rate of 4% a year compounded 
annually, the present value (PV), as of the end of Year 5 (PV5 ), of the cash flow 
received at the end of Year 20 is closest to:

0 1 2 3 4 5

PV5

20...

$50,000

A $22,819.
B $27,763.
C $28,873.

28 A client invests €20,000 in a four- year certificate of deposit (CD) that annu-
ally pays interest of 3.5%. The annual CD interest payments are automatically 
reinvested in a separate savings account at a stated annual interest rate of 2% 
compounded monthly. At maturity, the value of the combined asset is closest to:
A €21,670.
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B €22,890.
C €22,950.
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SOLUTIONS
1 A Investment 2 is identical to Investment 1 except that Investment 2 has low 

liquidity. The difference between the interest rate on Investment 2 and 
Investment 1 is 0.5 percentage point. This amount represents the liquidity 
premium, which represents compensation for the risk of loss relative to 
an investment’s fair value if the investment needs to be converted to cash 
quickly.

B To estimate the default risk premium, find the two investments that have the 
same maturity but different levels of default risk. Both Investments 4 and 5 
have a maturity of eight years. Investment 5, however, has low liquidity and 
thus bears a liquidity premium. The difference between the interest rates 
of Investments 5 and 4 is 2.5 percentage points. The liquidity premium is 
0.5 percentage point (from Part A). This leaves 2.5 − 0.5 = 2.0 percentage 
points that must represent a default risk premium reflecting Investment 5’s 
high default risk.

C Investment 3 has liquidity risk and default risk comparable to Investment 
2, but with its longer time to maturity, Investment 3 should have a higher 
maturity premium. The interest rate on Investment 3, r3, should thus be 
above 2.5 percent (the interest rate on Investment 2). If the liquidity of 
Investment 3 were high, Investment 3 would match Investment 4 except for 
Investment 3’s shorter maturity. We would then conclude that Investment 
3’s interest rate should be less than the interest rate on Investment 4, which 
is 4 percent. In contrast to Investment 4, however, Investment 3 has low 
liquidity. It is possible that the interest rate on Investment 3 exceeds that of 
Investment 4 despite 3’s shorter maturity, depending on the relative size of 
the liquidity and maturity premiums. However, we expect r3 to be less than 
4.5 percent, the expected interest rate on Investment 4 if it had low liquidity. 
Thus 2.5 percent < r3 < 4.5 percent.

 2 i. Draw a time line.
0 1 2 19 20

$20,000 $20,000 $20,000 $20,000
X = FV

 ii. Identify the problem as the future value of an annuity.
 iii. Use the formula for the future value of an annuity.

FVN

N
A

r
r

�
�� � ��

�
�

�

�
�

�
�� � ��

�
�

�

�
�

�

1 1

20 000
1 0 07 1

0 07
819 90

20
$ ,

.
.

$ , 99 85.

20190 1 2

$20,000 $20,000 $20,000 $20,000

FV = $819,909.85

 iv. Alternatively, use a financial calculator.
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Notation Used  
on Most Calculators 

Numerical Value 
for This Problem

N 20
%i 7
PV n/a (= 0)
FV compute X
PMT $20,000

 Enter 20 for N, the number of periods. Enter 7 for the interest rate and 
20,000 for the payment size. The present value is not needed, so enter 0. 
Calculate the future value. Verify that you get $819,909.85 to make sure you 
have mastered your calculator’s keystrokes.

 In summary, if the couple sets aside $20,000 each year (starting next year), 
they will have $819,909.85 in 20 years if they earn 7 percent annually.

 3 i. Draw a time line.
6543210

$20,000 $20,000 $20,000 X = FV

 ii. Recognize the problem as the future value of a delayed annuity. Delaying the 
payments requires two calculations.

 iii. Use the formula for the future value of an annuity (Equation 7).

FVN

N
A

r
r

�
�� � ��

�
�

�

�
�

1 1

 to bring the three $20,000 payments to an equivalent lump sum of 
$65,562.00 four years from today.

Notation Used  
on Most Calculators 

Numerical Value 
for This Problem

N 3
%i 9
PV n/a (= 0)
FV compute X
PMT $20,000

 iv. Use the formula for the future value of a lump sum (Equation 2), FVN = 
PV(1 + r)N, to bring the single lump sum of $65,562.00 to an equivalent 
lump sum of $77,894.21 six years from today.

Notation Used  
on Most Calculators 

Numerical Value 
for This Problem

N 2
%i 9
PV $65,562.00
FV compute X
PMT n/a (= 0)
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6543210

$20,000$20,000

$65,562.00 $77,894.21

$20,000

FV

FV

FV 64

X

 In summary, your client will have $77,894.21 in six years if she receives 
three yearly payments of $20,000 starting in Year 2 and can earn 9 percent 
annually on her investments.

 4 i. Draw a time line.
543210

X
PV FV

$75,000

 ii. Identify the problem as the present value of a lump sum.
 iii. Use the formula for the present value of a lump sum.

PV FV� �� �
� �� �
�

�

�
N

Nr1

75 000 1 0 06
56 044 36

5$ , .
$ , .

543210

$56,044.36 $75,000
PV FV

 In summary, the father will need to invest $56,044.36 today in order to have 
$75,000 in five years if his investments earn 6 percent annually.

 5 i. Draw a time line for the 10 annual payments.

X
PV

2 9 1010

$100,000$100,000$100,000$100,000

 ii. Identify the problem as the present value of an annuity.
 iii. Use the formula for the present value of an annuity.

PV �

�
�� �
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�
�
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A
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N1 1

1

100 000

1 1

1 0 05
0 05

10
$ ,

.
.

��
�

� $772,173.49

109210

X $100,000 $100,000 $100,000 $100,000

PV = $772,173.49

 iv. Alternatively, use a financial calculator.
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Notation Used  
on Most Calculators 

Numerical Value 
for This Problem

N 10
%i 5
PV compute X
FV n/a (= 0)
PMT $100,000

 In summary, the present value of 10 payments of $100,000 is $772,173.49 
if the first payment is received in one year and the rate is 5 percent com-
pounded annually. Your client should accept no less than this amount for his 
lump sum payment.

6 A To evaluate the first instrument, take the following steps:
 i. Draw a time line.

0 1 2 543 6 7

$20,000 $20,000 $20,000 $20,000

 ii. 

PV3 �

�
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�
�
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�
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�
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A
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N1 1

1

20 000

1 1

1 0 08
0 08

4
$ ,

.
. ��

� $66,242.54

 iii. 

PV
PV

0 �
�� �

� �3
31 1 08

52 585 46
r N

$66,242.54 $
.

, .

 You should be willing to pay $52,585.46 for this instrument.
B To evaluate the second instrument, take the following steps:

 i. Draw a time line.
43210

$20,000 $20,000 $20,000 $20,000

$30,000
+10,000

 The time line shows that this instrument can be analyzed as an ordinary 
annuity of $20,000 with four payments (valued in Step ii below) and a 
$10,000 payment to be received at t = 4 (valued in Step iii below).
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 ii. 

PV �
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4
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�� $66,242.54

 iii. 

PV
FV

�
�� �

�
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�4
41 1 0 08

7 350 30
r N

$10,000 $
.

, .

 iv. Total = $66,242.54 + $7,350.30 = $73,592.84
 You should be willing to pay $73,592.84 for this instrument.

 7 i. Draw a time line.
4 5 63210

$10,000 $10,000 $10,000 $10,000X
PV

 ii. Recognize the problem as a delayed annuity. Delaying the payments requires 
two calculations.

 iii. Use the formula for the present value of an annuity (Equation 11).

PV �

�
�� �

�

�

�
�
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�

�

�
�
�A

r
r

N1 1

1

 to bring the four payments of $10,000 back to a single equivalent lump sum 
of $33,121.27 at t = 2. Note that we use t = 2 because the first annuity pay-
ment is then one period away, giving an ordinary annuity.

Notation Used  
on Most Calculators 

Numerical Value 
for This Problem

N 4
%i 8
PV compute X
PMT $10,000

 iv. Then use the formula for the present value of a lump sum (Equation 8), PV 
= FVN(1 + r)−N, to bring back the single payment of $33,121.27 (at t = 2) to 
an equivalent single payment of $28,396.15 (at t = 0).

Notation Used  
on Most Calculators 

Numerical Value 
for This Problem

N 2
%i 8
PV compute X
FV $33,121.27
PMT n/a (= 0)
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0 1 2 3 4 5 6

$10,000 $10,000 $10,000 $10,000X
PV

$28,396.15 $33,121.27
Equation Equation8 11

 In summary, you should set aside $28,396.15 today to cover four payments 
of $10,000 starting in three years if your investments earn a rate of 8 percent 
annually.

 8 i. Draw a time line.
0 1 2 17

X

18 19 20 21

$20,000 $20,000 $20,000 $20,000(   ) X(   )X(   )

 ii. Recognize that you need to equate the values of two annuities.
 iii. Equate the value of the four $20,000 payments to a single payment in Period 

17 using the formula for the present value of an annuity (Equation 11), with 
r = 0.05. The present value of the college costs as of t = 17 is $70,919.

PV �

�
� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�$20,000 $

1 1

1 05
0 05

70 919
4.

.
,

Notation Used  
on Most Calculators 

Numerical Value 
for This Problem

N 4
%i 5
PV compute X
FV n/a (= 0)
PMT $20,000

 iv. Equate the value of the 17 investments of X to the amount calculated in Step 
iii, college costs as of t = 17, using the formula for the future value of an 
annuity (Equation 7). Then solve for X.

$70,919 �
� � ��

�
�

�

�
� �

�

1 05 1
0 05

25 840366

2 744 50

17.
.

.

$ , .

X

X

Notation Used  
on Most Calculators 

Numerical Value 
for This Problem

N 17
%i 5
PV n/a (= 0)
FV $70,919
PMT compute X
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0 1 2 17

X

18 19 20 21

$20,000

$70,919

$70,919

$20,000 $20,000 $20,000X(   )X(   ) X(   )

Equation 7

Equation 11

25.8404
=

 In summary, your client will have to save $2,744.50 each year if she starts 
next year and makes 17 payments into a savings account paying 5 percent 
annually.

 9 i. Draw a time line.
0 1 2 17 18 19 20 21

C$7,000 Year 1 Year 2 Year 3 Year 4
payment payment payment payment

 ii. Recognize that the payments in Years 18, 19, 20, and 21 are the future values 
of a lump sum of C$7,000 in Year 0.

 iii. With r = 5%, use the formula for the future value of a lump sum 
(Equation 2), FVN = PV (1 + r)N, four times to find the payments. These 
future values are shown on the time line below.

Equation 2

0 1 2 17 18 19 20 21

C$7,000

C$17,689
C$18,573

C$19,502

C$16,846

Year 1 Year 2 Year 3 Year 4
payment payment payment payment

 iv. Using the formula for the present value of a lump sum (r = 6%), equate the 
four college payments to single payments as of t = 17 and add them together. 
C$16,846(1.06)−1 + C$17,689(1.06)−2 + C$18,573(1.06)−3 + C$19,502(1.06)−4 
= C$62,677

 v. Equate the sum of C$62,677 at t = 17 to the 17 payments of X, using the 
formula for the future value of an annuity (Equation 7). Then solve for X.

C

C

$62,677

$

�
� � ��

�
�

�

�
� �

�

X X

X

1 06 1
0 06

28 21288

2 221 58

17.
.

.

, .

Notation Used  
on Most Calculators 

Numerical Value 
for This Problem

N 17
%i 6
PV n/a (= 0)
FV C$62,677
PMT compute X
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0 1 2 17

X

18 19 20 21

C$62,677

X(   )X(   ) X(   )

Equation 7
28.21288
=

 In summary, the couple will need to put aside C$2,221.58 each year if they 
start next year and make 17 equal payments.

10 C is correct. The sum of the real risk- free interest rate and the inflation pre-
mium is the nominal risk- free rate.

11 C is correct. US Treasury bonds are highly liquid, whereas the bonds of small 
issuers trade infrequently and the interest rate includes a liquidity premium. 
This liquidity premium reflects the relatively high costs (including the impact 
on price) of selling a position.

12 A is correct. The effective annual rate (EAR) when compounded daily is 4.08%.

EAR = (1 + Periodic interest rate)m – 1  

EAR = (1 + 0.04/365)365 – 1  

EAR = (1.0408) – 1 = 0.04081 ≈ 4.08%.

13 C is correct, as shown in the following (where FV is future value and PV is pres-
ent value):

FV PV� ��

�
�

�

�
�1

r
m
s

mN

FV6

4 6
75 000 1 0 07

4
� ��

�
�

�
�
�

�� �
$ , .

FV6 = $113,733.21.

14 B is correct because £97,531 represents the present value (PV) of £100,000 
received one year from today when today’s deposit earns a stated annual rate 
of 2.50% and interest compounds weekly, as shown in the following equation 
(where FV is future value):

PV FV� ��

�
�

�

�
�
�

N
s

mNr
m

1

PV � ��
�
�

�
�
�
�

£100 000 1 0 025
52

52
, .

PV = £97,531.58.

15 A is correct. The effective annual rate (EAR) is calculated as follows:

EAR = (1 + Periodic interest rate)m – 1  

EAR = (1 + 0.03/365)365 – 1  

EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%.
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 Solving for N on a financial calculator results in (where FV is future value and 
PV is present value):

(1 + 0.030453)N = FVN/PV = ¥1,000,000/¥250,000

= 46.21 years, which multiplied by 12 to convert to months results in 554.5, 
or ≈ 555 months.

16 B is correct. The difference between continuous compounding and daily com-
pounding is

€127,496.85 – €127,491.29 = €5.56, or ≈ €6, as shown in the following 
calculations.

 With continuous compounding, the investment earns (where PV is present 
value)

 PV PVer Ns −  = €1,000,000e0.03(4) – €1,000,000
  = €1,127,496.85 – €1,000,000
  = €127,496.85

 With daily compounding, the investment earns:

€1,000,000(1 + 0.03/365)365(4) – €1,000,000 = €1,127,491.29 – €1,000,000 = 
€127,491.29.

17 B is correct, as shown in the following calculation for an annuity (A) due:

PV �

�
�� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�� �A
r

r
r

N1 1

1
1

 where A = €300, r = 0.04, and N = 5.

PV �

�
�� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

� �¬300

1 1

1 04
04

1 04
5.

.
.

PV = €1,388.97, or ≈ €1,389.

18 B is correct. The value of the perpetuity one year from now is calculated as:
 PV = A/r, where PV is present value, A is annuity, and r is expressed as a quar-

terly required rate of return because the payments are quarterly.

PV = $2.00/(0.06/4)

PV = $133.33.

 The value today is (where FV is future value)

PV = FVN(1 + r)–N

PV = $133.33(1 + 0.015)–4

PV = $125.62 ≈ $126.
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19 B is correct. To solve for the future value of unequal cash flows, compute the 
future value of each payment as of Year 4 at the semiannual rate of 2%, and then 
sum the individual future values, as follows:

Year End of Year Deposits ($) Factor Future Value ($)

1 4,000 (1.02)6 4,504.65
2 8,000 (1.02)4 8,659.46
3 7,000 (1.02)2 7,282.80
4 10,000 (1.02)0 10,000.00

Sum = 30,446.91

20 C is correct, as shown in the following (where FV is future value and PV is pres-
ent value):

 If:

FV PVN
s

mNr
m

� ��

�
�

�

�
�1

 Then:

FV
PV

N mN sr
m

�

�
�

�

�
� � �

1

1

800 000
500 000

1
2

1
2 6,

,
�

�
�

�

�
� � �
� rs

rs = 0.07988 (rounded to 8.0%).

21 C is correct. As shown below, the present value (PV) of a £2,000 per month 
perpetuity is worth approximately £400,000 at a 6% annual rate compounded 
monthly. Thus, the present value of the annuity (A) is worth more than the 
lump sum offers.

A = £2,000

r = (6%/12) = 0.005

PV = (A/r)

PV = (£2,000/0.005)

PV = £400,000

22 B is correct.
 The present value of a 10- year annuity (A) due with payments of $2,000 at a 5% 

discount rate is calculated as follows:

PV �

�
�� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�A
r

r

N1 1

1
2 000$ ,
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PV �

�
�� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�$ ,
.

.
$ ,2 000

1 1

1 0 05
0 05

2 000
9

PV = $16,215.64.

 Alternatively, the PV of a 10- year annuity due is simply the PV of the ordinary 
annuity multiplied by 1.05:

PV = $15,443.47 × 1.05

PV = $16,215.64.

23 B is correct. First, find the present value (PV) of an ordinary annuity in Year 17 
that represents the tuition costs:

$ ,
.

.
50 000

1 1

1 0 06
0 06

4�
�� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

= $50,000 × 3.4651

= $173,255.28.

 Then, find the PV of the annuity in today’s dollars (where FV is future value):

PV FV
0 171 0 06
�

�� �.

PV0 17
173 255 28

1 0 06
�

�� �
$ , .

.

PV0 = $64,340.85 ≈ $64,341.

24 B is correct, as shown in the following table.

Year
Cash Flow 

(€)
Formula 

CF × (1 + r)t
PV at 
Year 0

1 100,000 100,000(1.12)–1 = 89,285.71
2 150,000 150,000(1.12)–2 = 119,579.08
5 –10,000 –10,000(1.12)–5 = –5,674.27

203,190.52
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25 B is correct, calculated as follows (where A is annuity and PV is present value):

A PV of annuity� � �
�

�� �
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�
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�
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s
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06 12

200 000 51 72556
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£

26 A is correct. To solve for an annuity (A) payment, when the future value (FV), 
interest rate, and number of periods is known, use the following equation:

FV A�
��

�
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�
�
� �

�
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�
�
�
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�
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�

A

A = £460.68

27 B is correct. The PV in Year 5 of a $50,000 lump sum paid in Year 20 is 
$27,763.23 (where FV is future value):

PV = FVN(1 + r)–N

PV = $50,000(1 + 0.04)–15

PV = $27,763.23

28 B is correct, as the following cash flows show:
€20,000 initial deposit

€700 €700€700€700
annual

interest payments
(which earn 2.0%/year)

+
€20,000 (return of principal)

 The four annual interest payments are based on the CD’s 3.5% annual rate.
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 The first payment grows at 2.0% compounded monthly for three years (where 
FV is future value):

FVN � ��
�
�

�
�
�
�

¬700 1 0 02
12

3 12.

FVN = 743.25

 The second payment grows at 2.0% compounded monthly for two years:

FVN � ��
�
�

�
�
�
�

¬700 1 0 02
12

2 12.

FVN = 728.54

 The third payment grows at 2.0% compounded monthly for one year:

FVN � ��
�
�

�
�
�
�

¬700 1 0 02
12

1 12.

FVN = 714.13

 The fourth payment is paid at the end of Year 4. Its future value is €700.
 The sum of all future value payments is as follows:

€20,000.00 CD
€743.25 First payment’s FV 
€728.54 Second payment’s FV
€714.13 Third payment’s FV
€700.00 Fourth payment’s FV

€22,885.92 Total FV
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LEARNING OUTCOMES
Mastery The candidate should be able to:

a. identify and compare data types;

b. describe how data are organized for quantitative analysis;

c. interpret frequency and related distributions;

d. interpret a contingency table;

e. describe ways that data may be visualized and evaluate uses of 
specific visualizations;

f. describe how to select among visualization types;

g. calculate and interpret measures of central tendency;

h. evaluate alternative definitions of mean to address an investment 
problem;

i. calculate quantiles and interpret related visualizations;

j. calculate and interpret measures of dispersion;

k. calculate and interpret target downside deviation;

l. interpret skewness;

m. interpret kurtosis;

n. interpret correlation between two variables.

R E A D I N G
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INTRODUCTION

Data have always been a key input for securities analysis and investment management, 
but the acceleration in the availability and the quantity of data has also been driving 
the rapid evolution of the investment industry. With the rise of big data and machine 
learning techniques, investment practitioners are embracing an era featuring large 
volume, high velocity, and a wide variety of data—allowing them to explore and exploit 
this abundance of information for their investment strategies.

While this data- rich environment offers potentially tremendous opportunities for 
investors, turning data into useful information is not so straightforward. Organizing, 
cleaning, and analyzing data are crucial to the development of successful investment 
strategies; otherwise, we end up with “garbage in and garbage out” and failed invest-
ments. It is often said that 80% of an analyst’s time is spent on finding, organizing, 
cleaning, and analyzing data, while just 20% of her/his time is taken up by model 
development. So, the importance of having a properly organized, cleansed, and well- 
analyzed dataset cannot be over- emphasized. With this essential requirement met, 
an appropriately executed data analysis can detect important relationships within 
data, uncover underlying structures, identify outliers, and extract potentially valuable 
insights. Utilizing both visual tools and quantitative methods, like the ones covered 
in this reading, is the first step in summarizing and understanding data that will be 
crucial inputs to an investment strategy.

This reading provides a foundation for understanding important concepts that are 
an indispensable part of the analytical tool kit needed by investment practitioners, 
from junior analysts to senior portfolio managers. These basic concepts pave the way 
for more sophisticated tools that will be developed as the quantitative methods topic 
unfolds and that are integral to gaining competencies in the investment management 
techniques and asset classes that are presented later in the CFA curriculum.

Section 2 covers core data types, including continuous and discrete numerical 
data, nominal and ordinal categorical data, and structured versus unstructured data. 
Organizing data into arrays and data tables and summarizing data in frequency dis-
tributions and contingency tables are discussed in Sections 3–5. Section 6 introduces 
the important topic of data visualization using a range of charts and graphics to 
summarize, explore, and better understand data. Section 7 covers the key measures 
of central tendency, including several variants of mean that are especially useful in 
investments. Quantiles and their investment applications are the focus of Section 
8. Key measures of dispersion are discussed in Sections 9 and 10. The shape of data 
distributions—specifically, skewness and kurtosis—are covered in Section 11. Section 
12 provides a graphical introduction to covariance and correlation between two vari-
ables. The reading concludes with a Summary.

DATA TYPES

a Identify and compare data types

Data can be defined as a collection of numberpanel datas, characters, words, and 
text—as well as images, audio, and video—in a raw or organized format to represent 
facts or information. To choose the appropriate statistical methods for summarizing 
and analyzing data and to select suitable charts for visualizing data, we need to dis-
tinguish among different data types. We will discuss data types under three different 
perspectives of classifications: numerical versus categorical data; cross- sectional vs. 
time- series vs. panel data; and structured vs. unstructured data.

1

2
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2.1 Numerical versus Categorical Data
From a statistical perspective, data can be classified into two basic groups: numerical 
data and categorical data.

2.1.1 Numerical Data

Numerical data are values that represent measured or counted quantities as a number 
and are also called quantitative data. Numerical (quantitative) data can be split into 
two types: continuous data and discrete data.

Continuous data are data that can be measured and can take on any numerical 
value in a specified range of values. For example, the future value of a lump- sum 
investment measures the amount of money to be received after a certain period of 
time bearing an interest rate. The future value could take on a range of values depend-
ing on the time period and interest rate. Another common example of continuous 
data is the price returns of a stock that measures price change over a given period in 
percentage terms.

Discrete data are numerical values that result from a counting process. So, 
practically speaking, the data are limited to a finite number of values. For example, 
the frequency of discrete compounding, m, counts the number of times that interest 
is accrued and paid out in a given year. The frequency could be monthly (m = 12), 
quarterly (m = 4), semi- yearly (m = 2), or yearly (m = 1).

2.1.2 Categorical Data

Categorical data (also called qualitative data) are values that describe a quality 
or characteristic of a group of observations and therefore can be used as labels to 
divide a dataset into groups to summarize and visualize. Usually they can take only 
a limited number of values that are mutually exclusive. Examples of categorical data 
for classifying companies include bankrupt vs. not bankrupt and dividends increased 
vs. no dividend action.

Nominal data are categorical values that are not amenable to being organized 
in a logical order. An example of nominal data is the classification of publicly 
listed stocks into 11 sectors, as shown in Exhibit 1, that are defined by the Global 
Industry Classification Standard (GICS). GICS, developed by Morgan Stanley Capital 
International (MSCI) and Standard & Poor’s (S&P), is a four- tiered, hierarchical indus-
try classification system consisting of 11 sectors, 24 industry groups, 69 industries, 
and 158 sub- industries. Each sector is defined by a unique text label, as shown in the 
column named “Sector.”

Exhibit 1   Equity Sector Classification by GICS

Sector  
(Text Label) 

Code  
(Numerical Label)

Energy 10
Materials 15
Industrials 20
Consumer Discretionary 25
Consumer Staples 30
Health Care 35
Financials 40
Information Technology 45
Communication Services 50

(continued)
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Sector  
(Text Label) 

Code  
(Numerical Label)

Utilities 55
Real Estate 60

Source: S&P Global Market Intelligence.

Text labels are a common format to represent nominal data, but nominal data 
can also be coded with numerical labels. As shown below, the column named “Code” 
contains a corresponding GICS code of each sector as a numerical value. However, 
the nominal data in numerical format do not indicate ranking, and any arithmetic 
operations on nominal data are not meaningful. In this example, the energy sector 
with the code 10 does not represent a lower or higher rank than the real estate sector 
with the code 60. Often, financial models, such as regression models, require input 
data to be numerical; so, nominal data in the input dataset must be coded numerically 
before applying an algorithm (that is, a process for problem solving) for performing 
the analysis. This would be mainly to identify the category (here, sector) in the model.

Ordinal data are categorical values that can be logically ordered or ranked. For 
example, the Morningstar and Standard & Poor’s star ratings for investment funds 
are ordinal data in which one star represents a group of funds judged to have had 
relatively the worst performance, with two, three, four, and five stars representing 
groups with increasingly better performance or quality as evaluated by those firms.

Ordinal data may also involve numbers to identify categories. For example, in 
ranking growth- oriented investment funds based on their five- year cumulative returns, 
we might assign the number 1 to the top performing 10% of funds, the number 2 to 
next best performing 10% of funds, and so on; the number 10 represents the bottom 
performing 10% of funds. Despite the fact that categories represented by ordinal 
data can be ranked higher or lower compared to each other, they do not necessarily 
establish a numerical difference between each category. Importantly, such investment 
fund ranking tells us nothing about the difference in performance between funds 
ranked 1 and 2 compared with the difference in performance between funds ranked 
3 and 4 or 9 and 10.

Having discussed different data types from a statistical perspective, it is import-
ant to note that at first glance, identifying data types may seem straightforward. In 
some situations, where categorical data are coded in numerical format, they should 
be distinguished from numerical data. A sound rule of thumb: Meaningful arithmetic 
operations can be performed on numerical data but not on categorical data.

EXAMPLE 1  

Identifying Data Types (I)
Identify the data type for each of the following kinds of investment- related 
information:

1 Number of coupon payments for a corporate bond. As background, a 
corporate bond is a contractual obligation between an issuing corporation 
(i.e., borrower) and bondholders (i.e., lenders) in which the issuer agrees 
to pay interest—in the form of fixed coupon payments—on specified 
dates, typically semi- annually, over the life of the bond (i.e., to its maturity 
date) and to repay principal (i.e., the amount borrowed) at maturity.

Exhibit 1   (Continued)
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2 Cash dividends per share paid by a public company. Note that cash 
dividends are a distribution paid to shareholders based on the number of 
shares owned.

3 Credit ratings for corporate bond issues. As background, credit ratings 
gauge the bond issuer’s ability to meet the promised payments on the 
bond. Bond rating agencies typically assign bond issues to discrete catego-
ries that are in descending order of credit quality (i.e., increasing probabil-
ity of non- payment or default).

4 Hedge fund classification types. Note that hedge funds are investment 
vehicles that are relatively unconstrained in their use of debt, derivatives, 
and long and short investment strategies. Hedge fund classification types 
group hedge funds by the kind of investment strategy they pursue.

Solution to 1
Number of coupon payments are discrete data. For example, a newly- issued 
5- year corporate bond paying interest semi- annually (quarterly) will make 10 
(20) coupon payments during its life. In this case, coupon payments are limited 
to a finite number of values; so, they are discrete.

Solution to 2
Cash dividends per share are continuous data since they can take on any non- 
negative values.

Solution to 3
Credit ratings are ordinal data. A rating places a bond issue in a category, and 
the categories are ordered with respect to the expected probability of default. 
But arithmetic operations cannot be done on credit ratings, and the difference in 
the expected probability of default between categories of highly rated bonds, for 
example, is not necessarily equal to that between categories of lowly rated bonds.

Solution to 4
Hedge fund classification types are nominal data. Each type groups together 
hedge funds with similar investment strategies. In contrast to credit ratings for 
bonds, however, hedge fund classification schemes do not involve a ranking. 
Thus, such classification schemes are not ordinal data.

2.2 Cross- Sectional versus Time- Series versus Panel Data
Another data classification standard is based on how data are collected, and it cate-
gorizes data into three types: cross- sectional, time series, and panel.

Prior to the description of the data types, we need to explain two data- related 
terminologies: variable and observation. A variable is a characteristic or quantity that 
can be measured, counted, or categorized and is subject to change. A variable can also 
be called a field, an attribute, or a feature. For example, stock price, market capital-
ization, dividend and dividend yield, earnings per share (EPS), and price- to- earnings 
ratio (P/E) are basic data variables for the financial analysis of a public company. An 
observation is the value of a specific variable collected at a point in time or over a 
specified period of time. For example, last year DEF, Inc. recorded EPS of $7.50. This 
value represented a 15% annual increase.
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Cross- sectional data are a list of the observations of a specific variable from 
multiple observational units at a given point in time. The observational units can be 
individuals, groups, companies, trading markets, regions, etc. For example, January 
inflation rates (i.e., the variable) for each of the euro- area countries (i.e., the observa-
tional units) in the European Union for a given year constitute cross- sectional data.

Time- series data are a sequence of observations for a single observational unit 
of a specific variable collected over time and at discrete and typically equally spaced 
intervals of time, such as daily, weekly, monthly, annually, or quarterly. For example, 
the daily closing prices (i.e., the variable) of a particular stock recorded for a given 
month constitute time- series data.

Panel data are a mix of time- series and cross- sectional data that are frequently 
used in financial analysis and modeling. Panel data consist of observations through 
time on one or more variables for multiple observational units. The observations in 
panel data are usually organized in a matrix format called a data table. Exhibit 2 is 
an example of panel data showing quarterly earnings per share (i.e., the variable) for 
three companies (i.e., the observational units) in a given year by quarter. Each column 
is a time series of data that represents the quarterly EPS observations from Q1 to Q4 
of a specific company, and each row is cross- sectional data that represent the EPS of 
all three companies of a particular quarter.

Exhibit 2   Earnings per Share in Euros of Three Eurozone Companies in a 
Given Year

Time Period Company A Company B Company C

Q1 13.53 0.84 −0.34
Q2 4.36 0.96 0.08
Q3 13.16 0.79 −2.72
Q4 12.95 0.19 0.09

2.3 Structured versus Unstructured Data
Categorizing data into structured and unstructured types is based on whether or not 
the data are in a highly organized form.

Structured data are highly organized in a pre- defined manner, usually with 
repeating patterns. The typical forms of structured data are one- dimensional arrays, 
such as a time series of a single variable, or two- dimensional data tables, where each 
column represents a variable or an observation unit and each row contains a set of 
values for the same columns. Structured data are relatively easy to enter, store, query, 
and analyze without much manual processing. Typical examples of structured com-
pany financial data are:

■■ Market data: data issued by stock exchanges, such as intra- day and daily closing 
stock prices and trading volumes.

■■ Fundamental data: data contained in financial statements, such as earnings per 
share, price to earnings ratio, dividend yield, and return on equity.

■■ Analytical data: data derived from analytics, such as cash flow projections or 
forecasted earnings growth.

Unstructured data, in contrast, are data that do not follow any conventionally 
organized forms. Some common types of unstructured data are text—such as financial 
news, posts in social media, and company filings with regulators—and also audio/
video, such as managements’ earnings calls and presentations to analysts.
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Unstructured data are a relatively new classification driven by the rise of alterna-
tive data (i.e., data generated from unconventional sources, like electronic devices, 
social media, sensor networks, and satellites, but also by companies in the normal 
course of business) and its growing adoption in the financial industry. Unstructured 
data are typically alternative data as they are usually collected from unconventional 
sources. By indicating the source from which the data are generated, such data can 
be classified into three groups:

■■ Produced by individuals (i.e., via social media posts, web searches, etc.);
■■ Generated by business processes (i.e., via credit card transactions, corporate 

regulatory filings, etc.); and
■■ Generated by sensors (i.e., via satellite imagery, foot traffic by mobile devices, 

etc.).

Unstructured data may offer new market insights not normally contained in data 
from traditional sources and may provide potential sources of returns for investment 
processes. Unlike structured data, however, utilizing unstructured data in investment 
analysis is challenging. Typically, financial models are able to take only structured data 
as inputs; therefore, unstructured data must first be transformed into structured data 
that models can process.

Exhibit 3 shows an excerpt from Form 10- Q (Quarterly Report) filed by Company 
XYZ with the US Securities and Exchange Commission (SEC) for the fiscal quarter 
ended 31 March 20XX. The form is an unstructured mix of text and tables, so it can-
not be directly used by computers as input to financial models. The SEC has utilized 
eXtensible Business Reporting Language (XBRL) to structure such data. The data 
extracted from the XBRL submission can be organized into five tab- delimited TXT 
format files that contain information about the submission, including taxonomy tags 
(i.e., financial statement items), dates, units of measure (uom), values (i.e., for the tag 
items), and more—making it readable by computer. Exhibit 4 shows an excerpt from 
one of the now structured data tables downloaded from the SEC’s EDGAR (Electronic 
Data Gathering, Analysis, and Retrieval) database.

Exhibit 3   Excerpt from 10- Q of Company XYZ for Fiscal Quarter Ended 31 March 20XX

Company XYZ 
Form 10- Q 

Fiscal Quarter Ended 31 March 20XX 
Table of Contents

Part I

Page
Item 1 Financial Statements 1
Item 2 Management’s Discussion and Analysis of Financial 

Condition and Results of Operations
21

Item 3 Quantitative and Qualitative Disclosures About Market 
Risk

32

Item 4 Controls and Procedures 32
Part II

Item 1 Legal Proceedings 33
Item 1A Risk Factors 33
Item 2 Unregistered Sales of Equity Securities and Use of 

Proceeds
43

Item 3 Defaults Upon Senior Securities 43

(continued)
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Item 4 Mine Safety Disclosures 43
Item 5 Other Information 43
Item 6 Exhibits 44

Condensed Consolidated Statements of Operations (Unaudited) 
(in millions, except number of shares, which are reflected in thousands and per share 

amounts)

31 March 20XX
Net sales:

 Products $46,565
 Services 11,450
  Total net sales 58,015

Cost of sales:

 Products 32,047
 Services 4,147
  Total cost of sales 36,194
   Gross margin 21,821

Operating expenses:

 Research and development 3,948
 Selling, general and administrative 4,458
  Total operating expenses 8,406

Operating income 13,415
Other income/(expense), net 378
Income before provision for income taxes 13,793
Provision for income taxes 2,232
Net income $11,561

Source: EDGAR.

Exhibit 4   Structured Data Extracted from Form 10- Q of Company XYZ for Fiscal Quarter Ended 31 
March 20XX

adsh tag ddate uom value

0000320193- 19- 
000066

RevenueFromContractWithCustomerExcludingAssessedTax 20XX0331 USD $58,015,000,000

0000320193- 19- 
000066

GrossProfit 20XX0331 USD $21,821,000,000

0000320193- 19- 
000066

OperatingExpenses 20XX0331 USD $8,406,000,000

Exhibit 3   (Continued)
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adsh tag ddate uom value

0000320193- 19- 
000066

OperatingIncomeLoss 20XX0331 USD $13,415,000,000

0000320193- 19- 
000066

NetIncomeLoss 20XX0331 USD $11,561,000,000

Source: EDGAR.

EXAMPLE 2  

Identifying Data Types (II)

1 Which of the following is most likely to be structured data?
A Social media posts where consumers are commenting on what they 

think of a company’s new product.
B Daily closing prices during the past month for all companies listed on 

Japan’s Nikkei 225 stock index.
C Audio and video of a CFO explaining her company’s latest earnings 

announcement to securities analysts.
2 Which of the following statements describing panel data is most accurate?

A It is a sequence of observations for a single observational unit of a 
specific variable collected over time at discrete and equally spaced 
intervals.

B It is a list of observations of a specific variable from multiple observa-
tional units at a given point in time.

C It is a mix of time- series and cross- sectional data that are frequently 
used in financial analysis and modeling.

3 Which of the following data series is least likely to be sortable by values?
A Daily trading volumes for stocks listed on the Shanghai Stock 

Exchange.
B EPS for a given year for technology companies included in the S&P 

500 Index.
C Dates of first default on bond payments for a group of bankrupt 

European manufacturing companies.
4 Which of the following best describes a time series?

A Daily stock prices of the XYZ stock over a 60- month period.
B Returns on four- star rated Morningstar investment funds at the end of 

the most recent month.
C Stock prices for all stocks in the FTSE100 on 31 December of the most 

recent calendar year.

Exhibit 4   (Continued)
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Solution to 1
B is correct as daily closing prices constitute structured data. A is incorrect as 
social media posts are unstructured data. C is incorrect as audio and video are 
unstructured data.

Solution to 2
C is correct as it most accurately describes panel data. A is incorrect as it 
describes time- series data. B is incorrect as it describes cross- sectional data.

Solution to 3
C is correct as dates are ordinal data that can be sorted by chronological order but 
not by value. A and B are incorrect as both daily trading volumes and earnings 
per share (EPS) are numerical data, so they can be sorted by values.

Solution to 4
A is correct since a time series is a sequence of observations of a specific variable 
(XYZ stock price) collected over time (60 months) and at discrete intervals of 
time (daily). B and C are both incorrect as they are cross- sectional data.

2.4 Data Summarization

b Describe how data are organized for quantitative analysis

Given the wide variety of possible formats of raw data, which are data available in 
their original form as collected, such data typically cannot be used by humans or 
computers to directly extract information and insights. Organizing data into a one- 
dimensional array or a two- dimensional array is typically the first step in data analytics 
and modeling. In this section, we will illustrate the construction of these typical data 
organization formats. We will also introduce two useful tools that can efficiently sum-
marize one- variable and two- variable data: frequency distributions and contingency 
tables, respectively. Both of them can give us a quick snapshot of the data and allow 
us to find patterns in the data and associations between variables.

ORGANIZING DATA FOR QUANTITATIVE ANALYSIS

b Describe how data are organized for quantitative analysis 

Quantitative analysis and modeling typically require input data to be in a clean and 
formatted form, so raw data are usually not suitable for use directly by analysts. 
Depending upon the number of variables, raw data can be organized into two typ-
ical formats for quantitative analysis: one- dimensional arrays and two- dimensional 
rectangular arrays.

A one- dimensional array is the simplest format for representing a collection of 
data of the same data type, so it is suitable for representing a single variable. Exhibit 5 
is an example of a one- dimensional array that shows the closing price for the first 10 
trading days for ABC Inc. stock after the company went public. Closing prices are 
time- series data collected at daily intervals, so it is natural to organize them into a 
time- ordered sequence. The time- series format also facilitates future data updates 
to the existing dataset. In this case, closing prices for future trading sessions can be 
easily added to the end of the array with no alteration of previously formatted data.

3
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More importantly, in contrast to compiling the data randomly in an unorganized 
manner, organizing such data by its time- series nature preserves valuable information 
beyond the basic descriptive statistics that summarize central tendency and spread 
variation in the data’s distribution. For example, by simply plotting the data against time, 
we can learn whether the data demonstrate any increasing or decreasing trends over 
time or whether the time series repeats certain patterns in a systematic way over time.

Exhibit 5   One- Dimensional Array: Daily Closing Price of 
ABC Inc. Stock

Observation by Day Stock Price ($)

1 57.21
2 58.26
3 58.64
4 56.19
5 54.78
6 54.26
7 56.88
8 54.74
9 52.42
10 50.14

A two- dimensional rectangular array (also called a data table) is one of the most 
popular forms for organizing data for processing by computers or for presenting data 
visually for consumption by humans. Similar to the structure in an Excel spreadsheet, 
a data table is comprised of columns and rows to hold multiple variables and multiple 
observations, respectively. When a data table is used to organize the data of one single 
observational unit (i.e., a single company), each column represents a different variable 
(feature or attribute) of that observational unit, and each row holds an observation for 
the different variables; successive rows represent the observations for successive time 
periods. In other words, observations of each variable are a time- series sequence that 
is sorted in either ascending or descending time order. Consequently, observations 
of different variables must be sorted and aligned to the same time scale. Example 3 
shows how to organize a raw dataset for a company collected online into a machine- 
readable data table.

EXAMPLE 3  

Organizing a Company’s Raw Data into a Data Table
Suppose you are conducting a valuation analysis of ABC Inc., which has been 
listed on the stock exchange for two years. The metrics to be used in your val-
uation include revenue, earnings per share (EPS), and dividends paid per share 
(DPS). You have retrieved the last two years of ABC’s quarterly data from the 
exchange’s website, which is shown in Exhibit 6. The data available online are 
pre- organized into a tabular format, where each column represents a fiscal year 
and each row represents a particular quarter with values of the three measures 
clustered together.
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Exhibit 6   Metrics of ABC Inc. Retrieved Online

Fiscal Quarter 
Year 1 

(Fiscal Year)
Year 2 

(Fiscal Year)

March

 Revenue $3,784(M) $4,097(M)
 EPS 1.37 −0.34
 DPS N/A N/A
June

 Revenue $4,236(M) $5,905(M)
 EPS 1.78 3.89
 DPS N/A 0.25
September

 Revenue $4,187(M) $4,997(M)
 EPS −3.38 −2.88
 DPS N/A 0.25
December

 Revenue $3,889(M) $4,389(M)
 EPS −8.66 −3.98
 DPS N/A 0.25

Use the data to construct a two- dimensional rectangular array (i.e., data table) 
with the columns representing the metrics for valuation and the observations 
arranged in a time- series sequence.

Solution:
To construct a two- dimensional rectangular array, we first need to determine 
the data table structure. The columns have been specified to represent the three 
valuation metrics (i.e., variables): revenue, EPS and DPS. The rows should be 
the observations for each variable in a time ordered sequence. In this example, 
the data for the valuation measures will be organized in the same quarterly 
intervals as the raw data retrieved online, starting from Q1 Year 1 to Q4 Year 2. 
Then, the observations from the original table can be placed accordingly into the 
data table by variable name and by filing quarter. Exhibit 7 shows the raw data 
reorganized in the two- dimensional rectangular array (by date and associated 
valuation metric), which can now be used in financial analysis and is readable 
by a computer.

It is worth pointing out that in case of missing values while organizing 
data, how to handle them depends largely on why the data are missing. In this 
example, dividends (DPS) in the first five quarters are missing because ABC Inc. 
did not authorize (and pay) any dividends. So, filling the dividend column with 
zeros is appropriate. If revenue, EPS, and DPS of a given quarter are missing 
due to particular data source issues, however, these missing values cannot be 
simply replaced with zeros; this action would result in incorrect interpretation. 
Instead, the missing values might be replaced with the latest available data or with 
interpolated values, depending on how the data will be consumed or modeled.
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Exhibit 7   Data Table for ABC Inc.

Revenue ($ Million) EPS ($) DPS ($)

Q1 Year 1 3,784 1.37 0
Q2 Year 1 4,236 1.78 0
Q3 Year 1 4,187 −3.38 0
Q4 Year 1 3,889 −8.66 0
Q1 Year 2 4,097 −0.34 0
Q2 Year 2 5,905 3.89 0.25
Q3 Year 2 4,997 −2.88 0.25
Q4 Year 2 4,389 −3.98 0.25

SUMMARIZING DATA USING FREQUENCY 
DISTRIBUTIONS

c Interpret frequency and related distributions

We now discuss various tabular formats for describing data based on the count of 
observations. These tables are a necessary step toward building a true visualization of 
a dataset. Later, we shall see how bar charts, tree- maps, and heat maps, among other 
graphic tools, are used to visualize important properties of a dataset.

A frequency distribution (also called a one- way table) is a tabular display of 
data constructed either by counting the observations of a variable by distinct values 
or groups or by tallying the values of a numerical variable into a set of numerically 
ordered bins. It is an important tool for initially summarizing data by groups or bins 
for easier interpretation.

Constructing a frequency distribution of a categorical variable is relatively straight-
forward and can be stated in the following two basic steps:

1 Count the number of observations for each unique value of the variable.
2 Construct a table listing each unique value and the corresponding counts, and 

then sort the records by number of counts in descending or ascending order to 
facilitate the display.

Exhibit 8 shows a frequency distribution of a portfolio’s stock holdings by sectors 
(the variables), which are defined by GICS. The portfolio contains a total of 479 stocks 
that have been individually classified into 11 GICS sectors (first column). The stocks 
are counted by sector and are summarized in the second column, absolute frequency. 
The absolute frequency, or simply the raw frequency, is the actual number of obser-
vations counted for each unique value of the variable (i.e., each sector). Often it is 
desirable to express the frequencies in terms of percentages, so we also show the rel-
ative frequency (in the third column), which is calculated as the absolute frequency 
of each unique value of the variable divided by the total number of observations. The 
relative frequency provides a normalized measure of the distribution of the data, 
allowing comparisons between datasets with different numbers of total observations.

4
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Exhibit 8   Frequency Distribution for a Portfolio by Sector

Sector 
(Variable)

Absolute  
Frequency

Relative  
Frequency

Industrials 73 15.2%
Information Technology 69 14.4%
Financials 67 14.0%
Consumer Discretionary 62 12.9%
Health Care 54 11.3%
Consumer Staples 33 6.9%
Real Estate 30 6.3%
Energy 29 6.1%
Utilities 26 5.4%
Materials 26 5.4%
Communication Services 10 2.1%
Total 479 100.0%

A frequency distribution table provides a snapshot of the data, and it facilitates 
finding patterns. Examining the distribution of absolute frequency in Exhibit 8, we 
see that the largest number of stocks (73), accounting for 15.2% of the stocks in the 
portfolio, are held in companies in the industrials sector. The sector with the least 
number of stocks (10) is communication services, which represents just 2.1% of the 
stocks in the portfolio.

It is also easy to see that the top four sectors (i.e., industrials, information tech-
nology, financials, and consumer discretionary) have very similar relative frequencies, 
between 15.2% and 12.9%. Similar relative frequencies, between 6.9% and 5.4%, are also 
seen among several other sectors. Note that the absolute frequencies add up to the 
total number of stocks in the portfolio (479), and the sum of the relative frequencies 
should be equal to 100%.

Frequency distributions also help in the analysis of large amounts of numerical 
data. The procedure for summarizing numerical data is a bit more involved than that 
for summarizing categorical data because it requires creating non- overlapping bins 
(also called intervals or buckets) and then counting the observations falling into each 
bin. One procedure for constructing a frequency distribution for numerical data can 
be stated as follows:

1 Sort the data in ascending order.
2 Calculate the range of the data, defined as Range = Maximum value − 

Minimum value.
3 Decide on the number of bins (k) in the frequency distribution.
4 Determine bin width as Range/k.
5 Determine the first bin by adding the bin width to the minimum value. Then, 

determine the remaining bins by successively adding the bin width to the prior 
bin’s end point and stopping after reaching a bin that includes the maximum 
value.
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6 Determine the number of observations falling into each bin by counting the 
number of observations whose values are equal to or exceed the bin minimum 
value yet are less than the bin’s maximum value. The exception is in the last bin, 
where the maximum value is equal to the last bin’s maximum, and therefore, the 
observation with the maximum value is included in this bin’s count.

7 Construct a table of the bins listed from smallest to largest that shows the num-
ber of observations falling into each bin.

In Step 4, when rounding the bin width, round up (rather than down) to ensure 
that the final bin includes the maximum value of the data.

These seven steps are basic guidelines for constructing frequency distributions. In 
practice, however, we may want to refine the above basic procedure. For example, we 
may want the bins to begin and end with whole numbers for ease of interpretation. 
Another practical refinement that promotes interpretation is to start the first bin at 
the nearest whole number below the minimum value.

As this procedure implies, a frequency distribution groups data into a set of bins, 
where each bin is defined by a unique set of values (i.e., beginning and ending points). 
Each observation falls into only one bin, and the total number of bins covers all the 
values represented in the data. The frequency distribution is the list of the bins together 
with the corresponding measures of frequency.

To illustrate the basic procedure, suppose we have 12 observations sorted in 
ascending order (Step 1):

−4.57, −4.04, −1.64, 0.28, 1.34, 2.35, 2.38, 4.28, 4.42, 4.68, 7.16, and 11.43.
The minimum observation is −4.57, and the maximum observation is +11.43. So, 

the range is +11.43 − (−4.57) = 16 (Step 2).
If we set k = 4 (Step 3), then the bin width is 16/4 = 4 (Step 4).
Exhibit 9 shows the repeated addition of the bin width of 4 to determine the end-

point for each of the bins (Step 5).

Exhibit 9   Determining Endpoints of the Bins

−4.57 + 4.0 = −0.57
−0.57 + 4.0 = 3.43

3.43 + 4.0 = 7.43
7.40 + 4.0 = 11.43

Thus, the bins are [−4.57 to −0.57), [−0.57 to 3.43), [3.43 to 7.43), and [7.43 to 
11.43], where the notation [−4.57 to −0.57) indicates −4.57 ≤ observation < −0.57. The 
parentheses indicate that the endpoints are not included in the bins, and the square 
brackets indicate that the beginning points and the last endpoint are included in the 
bin. Exhibit 10 summarizes Steps 5 through 7.

Exhibit 10   Frequency Distribution

Bin Absolute Frequency

A −4.57 ≤ observation < −0.57 3
B −0.57 ≤ observation < 3.43 4
C 3.43 ≤ observation < 7.43 4
D 7.43 ≤ observation ≤ 11.43 1
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Note that the bins do not overlap, so each observation can be placed uniquely into 
one bin, and the last bin includes the maximum value.

We turn to these issues in discussing the construction of frequency distributions 
for daily returns of the fictitious Euro- Asia- Africa (EAA) Equity Index. The dataset 
of daily returns of the EAA Equity Index spans a five- year period and consists of 
1,258 observations with a minimum value of −4.1% and a maximum value of 5.0%. 
Thus, the range of the data is 5% − (−4.1%) = 9.1%, approximately. [The mean daily 
return—mean as a measure of central tendency will be discussed shortly—is 0.04%.]

The decision on the number of bins (k) into which we should group the observa-
tions often involves inspecting the data and exercising judgment. How much detail 
should we include? If we use too few bins, we will summarize too much and may lose 
pertinent characteristics. Conversely, if we use too many bins, we may not summarize 
enough and may introduce unnecessary noise.

We can establish an appropriate value for k by evaluating the usefulness of the 
resulting bin width. A large number of empty bins may indicate that we are attempting 
to over- organize the data to present too much detail. Starting with a relatively small 
bin width, we can see whether or not the bins are mostly empty and whether or not 
the value of k associated with that bin width is too large. If the bins are mostly empty, 
implying that k is too large, we can consider increasingly larger bins (i.e., smaller values 
of k) until we have a frequency distribution that effectively summarizes the distribution.

Suppose that for ease of interpretation we want to use a bin width stated in whole 
rather than fractional percentages. In the case of the daily EAA Equity Index returns, 
a 1% bin width would be associated with 9.1/1 = 9.1 bins, which can be rounded up to 
k = 10 bins. That number of bins will cover a range of 1% × 10 = 10%. By constructing 
the frequency distribution in this manner, we will also have bins that end and begin 
at a value of 0%, thereby allowing us to count the negative and positive returns in the 
data. Without too much work, we have found an effective way to summarize the data.

Exhibit 11 shows the frequency distribution for the daily returns of the EAA Equity 
Index using return bins of 1%, where the first bin includes returns from −5.0% to −4.0% 
(exclusive, meaning < −4%) and the last bin includes daily returns from 4.0% to 5.0% 
(inclusive, meaning ≤ 5%). Note that to facilitate interpretation, the first bin starts at 
the nearest whole number below the minimum value (so, at −5.0%).

Exhibit 11 includes two other useful ways to present the data (which can be com-
puted in a straightforward manner once we have established the absolute and relative 
frequency distributions): the cumulative absolute frequency and the cumulative relative 
frequency. The cumulative absolute frequency cumulates (meaning, adds up) the 
absolute frequencies as we move from the first bin to the last bin. Similarly, the cumu-
lative relative frequency is a sequence of partial sums of the relative frequencies. For 
the last bin, the cumulative absolute frequency will equal the number observations in 
the dataset (1,258), and the cumulative relative frequency will equal 100%.

Exhibit 11   Frequency Distribution for Daily Returns of EAA Equity Index

Return  
Bin 
(%)

Absolute 
Frequency

Relative 
Frequency 

(%)

Cumulative 
Absolute 

Frequency

Cumulative 
Relative 

Frequency (%)

−5.0 to −4.0 1 0.08 1 0.08
−4.0 to −3.0 7 0.56 8 0.64
−3.0 to −2.0 23 1.83 31 2.46
−2.0 to −1.0 77 6.12 108 8.59
−1.0 to 0.0 470 37.36 578 45.95
0.0 to 1.0 555 44.12 1,133 90.06
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Return  
Bin 
(%)

Absolute 
Frequency

Relative 
Frequency 

(%)

Cumulative 
Absolute 

Frequency

Cumulative 
Relative 

Frequency (%)

1.0 to 2.0 110 8.74 1,243 98.81
2.0 to 3.0 13 1.03 1,256 99.84
3.0 to 4.0 1 0.08 1,257 99.92
4.0 to 5.0 1 0.08 1,258 100.00

As Exhibit  11 shows, the absolute frequencies vary widely, ranging from 1 to 
555. The bin encompassing returns between 0% and 1% has the most observations 
(555), and the corresponding relative frequency tells us these observations account 
for 44.12% of the total number of observations. The frequency distribution gives us 
a sense of not only where most of the observations lie but also whether the distribu-
tion is evenly spread. It is easy to see that the vast majority of observations (37.36% 
+ 44.12% = 81.48%) lie in the middle two bins spanning −1% to 1%. We can also see 
that not many observations are greater than 3% or less than −4%. Moreover, as there 
are bins with 0% as ending or beginning points, we are able to count positive and 
negative returns in the data. Looking at the cumulative relative frequency in the last 
column, we see that the bin of −1% to 0% shows a cumulative relative frequency of 
45.95%. This indicates that 45.95% of the observations lie below the daily return of 
0% and that 54.05% of the observations are positive daily returns.

It is worth noting that other than being summarized in tables, frequency distri-
butions also can be effectively represented in visuals, which will be discussed shortly 
in the section on data visualization.

EXAMPLE 4  

Constructing a Frequency Distribution of Country Index 
Returns
Suppose we have the annual equity index returns of a given year for 18 different 
countries, as shown in Exhibit 12, and we are asked to summarize the data.

Exhibit 12   Annual Equity Index Returns for 18 
Countries

Market Index Return (%)

Country A 7.7
Country B 8.5
Country C 9.1
Country D 5.5
Country E 7.1
Country F 9.9
Country G 6.2
Country H 6.8
Country I 7.5

(continued)

Exhibit 11   (Continued)
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Market Index Return (%)

Country J 8.9
Country K 7.4
Country L 8.6
Country M 9.6
Country N 7.7
Country O 6.8
Country P 6.1
Country Q 8.8
Country R 7.9

Construct a frequency distribution table from these data and state some key 
findings from the summarized data.

Solution:
The first step in constructing a frequency distribution table is to sort the return 
data in ascending order:

Market Index Return (%)

Country D 5.5
Country P 6.1
Country G 6.2
Country H 6.8
Country O 6.8
Country E 7.1
Country K 7.4
Country I 7.5
Country A 7.7
Country N 7.7
Country R 7.9
Country B 8.5
Country L 8.6
Country Q 8.8
Country J 8.9
Country C 9.1
Country M 9.6
Country F 9.9

The second step is to calculate the range of the data, which is 9.9% − 5.5% = 4.4%.
The third step is to decide on the number of bins. Here, we will use k = 5.
The fourth step is to determine the bin width. Here, it is 4.4%/5 = 0.88%, which 
we will round up to 1.0%.
The fifth step is to determine the bins, which are as follows:

5.0% + 1.0% = 6.0%
6.0% + 1.0% = 7.0%
7.0% + 1.0% = 8.0%

Exhibit 12   (Continued)
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8.0% + 1.0% = 9.0%
9.0% + 1.0% = 10.0%

For ease of interpretation, the first bin is set to begin with the nearest whole 
number (5.0%) below the minimum value (5.5%) of the data series.
The sixth step requires counting the return observations falling into each bin, 
and the seventh (last) step is use these results to construct the final frequency 
distribution table.
Exhibit 13 presents the frequency distribution table, which summarizes the data 
in Exhibit 12 into five bins spanning 5% to 10%. Note that with 18 countries, the 
relative frequency for one observation is calculated as 1/18 = 5.56%.

Exhibit 13   Frequency Distribution of Equity Index Returns

Return 
Bin (%)

Absolute 
Frequency

Relative 
Frequency (%)

Cumulative  
Absolute  

Frequency

Cumulative 
Relative  

Frequency 
(%)

5.0 to 6.0 1 5.56 1 5.56
6.0 to 7.0 4 22.22 5 27.78
7.0 to 8.0 6 33.33 11 61.11
8.0 to 9.0 4 22.22 15 83.33
9.0 to 10.0 3 16.67 18 100.00

As Exhibit  13 shows, there is substantial variation in these equity index 
returns. One- third of the observations fall in the 7.0 to 8.0% bin, making it the 
bin with the most observations. Both the 6.0 to 7.0% bin and the 8.0 to 9.0% 
bin hold four observations each, accounting for 22.22% of the total number of 
the observations, respectively. The two remaining bins have fewer observations, 
one or three observations, respectively.

SUMMARIZING DATA USING A CONTINGENCY TABLE

d Interpret a contingency table

We have shown that the frequency distribution table is a powerful tool to summarize 
data for one variable. How can we summarize data for two variables simultaneously? 
A contingency table provides a solution to this question.

A contingency table is a tabular format that displays the frequency distributions 
of two or more categorical variables simultaneously and is used for finding patterns 
between the variables. A contingency table for two categorical variables is also known 
as a two- way table. Contingency tables are constructed by listing all the levels (i.e., 
categories) of one variable as rows and all the levels of the other variable as columns 
in the table. A contingency table having R levels of one variable in rows and C levels 
of the other variable in columns is referred to as an R × C table. Note that each vari-
able in a contingency table must have a finite number of levels, which can be either 
ordered (ordinal data) or unordered (nominal data). Importantly, the data displayed 
in the cells of the contingency table can be either a frequency (count) or a relative 
frequency (percentage) based on either overall total, row totals, or column totals.

5
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Exhibit  14 presents a 5  × 3 contingency table that summarizes the number of 
stocks (i.e., frequency) in a particular portfolio of 1,000 stocks by two variables, sec-
tor and company market capitalization. Sector has five levels, with each one being a 
GICS- defined sector. Market capitalization (commonly referred to as “market cap”) is 
defined for a company as the number of shares outstanding times the price per share. 
The stocks in this portfolio are categorized by three levels of market capitalization: 
large cap, more than $10 billion; mid cap, $10 billion to $2 billion; and small cap, less 
than $2 billion.

Exhibit 14   Portfolio Frequencies by Sector and Market Capitalization

Market Capitalization Variable 
(3 Levels)

Sector Variable (5 Levels) Small Mid Large Total

Communication Services 55 35 20 110
Consumer Staples 50 30 30 110 
Energy 175 95 20 290
Health Care 275 105 55 435
Utilities 20 25 10 55
Total 575 290 135 1,000

The entries in the cells of the contingency table show the number of stocks of each 
sector with a given level of market cap. For example, there are 275 small- cap health 
care stocks, making it the portfolio’s largest subgroup in terms of frequency. These 
data are also called joint frequencies because you are joining one variable from the 
row (i.e., sector) and the other variable from the column (i.e., market cap) to count 
observations. The joint frequencies are then added across rows and across columns, 
and these corresponding sums are called marginal frequencies. For example, the 
marginal frequency of health care stocks in the portfolio is the sum of the joint fre-
quencies across all three levels of market cap, so 435 (= 275 + 105 + 55). Similarly, 
adding the joint frequencies of small- cap stocks across all five sectors gives the marginal 
frequency of small- cap stocks of 575 (= 55 + 50 + 175 + 275 + 20).

Clearly, health care stocks and small- cap stocks have the largest marginal frequen-
cies among sector and market cap, respectively, in this portfolio. Note the marginal 
frequencies represent the frequency distribution for each variable. Finally, the marginal 
frequencies for each variable must sum to the total number of stocks (overall total) 
in the portfolio—here, 1,000 (shown in the lower right cell).

Similar to the one- way frequency distribution table, we can express frequency in 
percentage terms as relative frequency by using one of three options. We can divide 
the joint frequencies by: a) the total count; b) the marginal frequency on a row; or c) 
the marginal frequency on a column.

Exhibit 15 shows the contingency table using relative frequencies based on total 
count. It is readily apparent that small- cap health care and energy stocks comprise the 
largest portions of the total portfolio, at 27.5% (= 275/1,000) and 17.5% (= 175/1,000), 
respectively, followed by mid- cap health care and energy stocks, at 10.5% and 9.5%, 
respectively. Together, these two sectors make up nearly three- quarters of the portfolio 
(43.5% + 29.0% = 72.5%).
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Exhibit 15   Relative Frequencies as Percentage of Total

Market Capitalization Variable 
(3 Levels)

Sector Variable (5 Levels) Small Mid Large Total

Communication Services 5.5% 3.5% 2.0% 11.0%
Consumer Staples 5.0% 3.0% 3.0% 11.0% 
Energy 17.5% 9.5% 2.0% 29.0%
Health Care 27.5% 10.5% 5.5% 43.5%
Utilities 2.0% 2.5% 1.0% 5.5%
Total 57.5% 29.0% 13.5% 100%

Exhibit 16 shows relative frequencies based on marginal frequencies of market 
cap (i.e., columns). From this perspective, it is clear that the health care and energy 
sectors dominate the other sectors at each level of market capitalization: 78.3% (= 
275/575 + 175/575), 69.0% (= 105/290 + 95/290), and 55.6% (= 55/135 + 20/135), for 
small, mid, and large caps, respectively. Note that there may be a small rounding error 
difference between these results and the numbers shown in Exhibit 15.

Exhibit 16   Relative Frequencies: Sector as Percentage of Market Cap

Market Capitalization Variable 
(3 Levels)

Sector Variable (5 Levels) Small Mid Large Total

Communication Services 9.6% 12.1% 14.8% 11.0%
Consumer Staples 8.7% 10.3% 22.2% 11.0%
Energy 30.4% 32.8% 14.8% 29.0%
Health Care 47.8% 36.2% 40.7% 43.5%
Utilities 3.5% 8.6% 7.4% 5.5%
Total 100.0% 100.0% 100.0% 100.0%

In conclusion, the findings from these contingency tables using frequencies and 
relative frequencies indicate that in terms of the number of stocks, the portfolio can 
be generally described as a small- to mid- cap- oriented health care and energy sector 
portfolio that also includes stocks of several other defensive sectors.

As an analytical tool, contingency tables can be used in different applications. One 
application is for evaluating the performance of a classification model (in this case, 
the contingency table is called a confusion matrix). Suppose we have a model for 
classifying companies into two groups: those that default on their bond payments and 
those that do not default. The confusion matrix for displaying the model’s results will 
be a 2 × 2 table showing the frequency of actual defaults versus the model’s predicted 
frequency of defaults. Exhibit 17 shows such a confusion matrix for a sample of 2,000 
non- investment- grade bonds. Using company characteristics and other inputs, the 
model correctly predicts 300 cases of bond defaults and 1,650 cases of no defaults.
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Exhibit 17   Confusion Matrix for Bond Default Prediction Model

Predicted Actual Default

Default Yes No Total

Yes 300 40 340
No 10 1,650 1,660
Total 310 1,690 2,000

We can also observe that this classification model incorrectly predicts default in 
40 cases where no default actually occurred and also incorrectly predicts no default 
in 10 cases where default actually did occur. Later in the CFA Program curriculum 
you will learn how to construct a confusion matrix, how to calculate related model 
performance metrics, and how to use them to evaluate and tune a classification model.

Another application of contingency tables is to investigate potential association 
between two categorical variables. For example, revisiting Exhibit 14, one may ask 
whether the distribution of stocks by sectors is independent of the levels of market 
capitalization? Given the dominance of small- cap and mid- cap health care and energy 
stocks, the answer is likely, no.

One way to test for a potential association between categorical variables is to per-
form a chi- square test of independence. Essentially, the procedure involves using 
the marginal frequencies in the contingency table to construct a table with expected 
values of the observations. The actual values and expected values are used to derive 
the chi- square test statistic. This test statistic is then compared to a value from the 
chi- square distribution for a given level of significance. If the test statistic is greater 
than the chi- square distribution value, then there is evidence to reject the claim of 
independence, implying a significant association exists between the categorical vari-
ables. The following example describes how a contingency table is used to set up this 
test of independence.

EXAMPLE 5  

Contingency Tables and Association between Two 
Categorical Variables
Suppose we randomly pick 315 investment funds and classify them two ways: 
by fund style, either a growth fund or a value fund; and by risk level, either 
low risk or high risk. Growth funds primarily invest in stocks whose earnings 
are expected to grow at a faster rate than earnings for the broad stock market. 
Value funds primarily invest in stocks that appear to be undervalued relative to 
their fundamental values. Risk here refers to volatility in the return of a given 
investment fund, so low (high) volatility implies low (high) risk. The data are 
summarized in a 2 × 2 contingency table shown in Exhibit 18.
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Exhibit 18   Contingency Table by Investment Fund Style and Risk 
Level

Low Risk High Risk

Growth 73 26
Value 183 33

1 Calculate the number of growth funds and number of value funds out of 
the total funds.

2 Calculate the number of low- risk and high- risk funds out of the total 
funds.

3 Describe how the contingency table is used to set up a test for indepen-
dence between fund style and risk level.

Solution to 1
The task is to calculate the marginal frequencies by fund style, which is done by 
adding joint frequencies across the rows. Therefore, the marginal frequency for 
growth is 73 + 26 = 99, and the marginal frequency for value is 183 + 33 = 216.

Solution to 2
The task is to calculate the marginal frequencies by fund risk, which is done by 
adding joint frequencies down the columns. Therefore, the marginal frequency 
for low risk is 73 + 183 = 256, and the marginal frequency for high risk is 26 + 
33 = 59.

Solution to 3
Based on the procedure mentioned for conducting a chi- square test of indepen-
dence, we would perform the following three steps.

Step 1: Add the marginal frequencies and overall total to the contingency 
table. We have also included the relative frequency table for observed values.

Exhibit 19a   Observed Marginal Frequencies and Relative Frequencies

Observed Values Observed Values

Low 
Risk

High 
Risk

Low 
Risk

High 
Risk

Growth 73 26 99 Growth 74% 26% 100%
Value 183 33 216 Value 85% 15% 100%

256 59 315

Step 2: Use the marginal frequencies in the contingency table to construct 
a table with expected values of the observations. To determine expected values 
for each cell, multiply the respective row total by the respective column total, 
then divide by the overall total. So, for celli,j (in ith row and jth column):

Expected Valuei,j = (Total Row i × Total Column j)/Overall Total

For example,
Expected value for Growth/Low Risk is: (99 × 256)/ 315 = 80.46; and

(1)
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Expected value for Value/High Risk is: (216 × 59) / 315 = 40.46.

The table of expected values (and accompanying relative frequency table) are:

Exhibit 19b   Expected Marginal Frequencies and Relative Frequencies

Observed Values Observed Values

Low 
Risk

High 
Risk

Low 
Risk

High 
Risk

Growth 80.457 18.543 99 Growth 81% 19% 100%
Value 175.543 40.457 216 Value 81% 19% 100%

256 59 315

Step 3: Use the actual values and the expected values of observation counts 
to derive the chi- square test statistic, which is then compared to a value from 
the chi- square distribution for a given level of significance. If the test statistic 
is greater than the chi- square distribution value, then there is evidence of a 
significant association between the categorical variables.

DATA VISUALIZATION

e Describe ways that data may be visualized and evaluate uses of specific 
visualizations

Visualization is the presentation of data in a pictorial or graphical format for the 
purpose of increasing understanding and for gaining insights into the data. As has 
been said, “a picture is worth a thousand words.” In this section, we discuss a variety 
of charts that are useful for understanding distributions, making comparisons, and 
exploring potential relationships among data. Specifically, we will cover visualizing 
frequency distributions of numerical and categorical data by using plots that represent 
multi- dimensional data for discovering relationships and by interpreting visuals that 
display unstructured data.

6.1 Histogram and Frequency Polygon
A histogram is a chart that presents the distribution of numerical data by using the 
height of a bar or column to represent the absolute frequency of each bin or interval 
in the distribution.

To construct a histogram from a continuous variable, we first need to split the 
data into bins and summarize the data into a frequency distribution table, such as 
the one we constructed in Exhibit 11. In a histogram, the y-axis generally represents 
the absolute frequency or the relative frequency in percentage terms, while the x-axis 
usually represents the bins of the variable. Using the frequency distribution table in 
Exhibit 11, we plot the histogram of daily returns of the EAA Equity Index, as shown 
in Exhibit 20. The bars are of equal width, representing the bin width of 1% for each 
return interval. The bars are usually drawn with no spaces in between, but small gaps 
can also be added between adjacent bars to increase readability, as in this exhibit. In 
this case, the height of each bar represents the absolute frequency for each return 

6
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bin. A quick glance can tell us that the return bin 0% to 1% (exclusive) has the highest 
frequency, with more than 500 observations (555, to be exact), and it is represented 
by the tallest bar in the histogram.

An advantage of the histogram is that it can effectively present a large amount of 
numerical data that has been grouped into a frequency distribution and can allow a 
quick inspection of the shape, center, and spread of the distribution to better under-
stand it. For example, in Exhibit 20, despite the histogram of daily EAA Equity Index 
returns appearing bell- shaped and roughly symmetrical, most bars to the right side 
of the origin (i.e., zero) are taller than those on the left side, indicating that more 
observations lie in the bins in positive territory. Remember that in the earlier dis-
cussion of this return distribution, it was noted that 54.1% of the observations are 
positive daily returns.

As mentioned, histograms can also be created with relative frequencies—the choice 
of using absolute versus relative frequency depends on the question being answered. 
An absolute frequency histogram best answers the question of how many items are 
in each bin, while a relative frequency histogram gives the proportion or percentage 
of the total observations in each bin.

Exhibit 20   Histogram Overlaid with Frequency Polygon for Daily Returns of 
EAA Equity Index

Frequency
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Another graphical tool for displaying frequency distributions is the frequency 
polygon. To construct a frequency polygon, we plot the midpoint of each return 
bin on the x-axis and the absolute frequency for that bin on the y-axis. We then con-
nect neighboring points with a straight line. Exhibit 20 shows the frequency polygon 
that overlays the histogram. In the graph, for example, the return interval 1% to 2% 
(exclusive) has a frequency of 110, so we plot the return- interval midpoint of 0.5% 
(which is 1.50% on the x-axis) and a frequency of 110 (on the y-axis). Importantly, 
the frequency polygon can quickly convey a visual understanding of the distribution 
since it displays frequency as an area under the curve.

Another form for visualizing frequency distributions is the cumulative frequency 
distribution chart. Such a chart can plot either the cumulative absolute frequency or 
the cumulative relative frequency on the y-axis against the upper limit of the interval. 
The cumulative frequency distribution chart allows us to see the number or the per-
centage of the observations that lie below a certain value. To construct the cumulative 
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frequency distribution, we graph the returns in the fourth (i.e., Cumulative Absolute 
Frequency) or fifth (i.e., Cumulative Relative Frequency) column of Exhibit 11 against 
the upper limit of each return interval.

Exhibit 21 presents the graph of the cumulative absolute frequency distribution 
for the daily returns on the EAA Equity Index. Notice that the cumulative distribu-
tion tends to flatten out when returns are extremely negative or extremely positive 
because the frequencies in these bins are quite small. The steep slope in the middle 
of Exhibit 21 reflects the fact that most of the observations—[(470 + 555)/1,258], or 
81.5%—lie in the neighborhood of −1.0% to 1.0%.

Exhibit 21   Cumulative Absolute Frequency Distribution of Daily Returns of 
EAA Equity Index
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6.2 Bar Chart
As we have demonstrated, the histogram is an efficient graphical tool to present the 
frequency distribution of numerical data. The frequency distribution of categorical 
data can be plotted in a similar type of graph called a bar chart. In a bar chart, each 
bar represents a distinct category, with the bar’s height proportional to the frequency 
of the corresponding category.

Similar to plotting a histogram, the construction of a bar chart with one categorical 
variable first requires a frequency distribution table summarized from the variable. 
Note that the bars can be plotted vertically or horizontally. In a vertical bar chart, 
the y-axis still represents the absolute frequency or the relative frequency. Different 
from the histogram, however, is that the x-axis in a bar chart represents the mutually 
exclusive categories to be compared rather than bins that group numerical data.

For example, using the marginal frequencies for the five GICS sectors shown in 
the last column in Exhibit 14, we plot a horizontal bar chart in Exhibit 22 to show 
the frequency of stocks by sector in the portfolio. The bars are of equal width to rep-
resent each sector, and sufficient space should be between adjacent bars to separate 
them from each other. Because this is a horizontal bar chart—in this case, the x-axis 
shows the absolute frequency and the y-axis represents the sectors—the length of 
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each bar represents the absolute frequency of each sector. Since sectors are nominal 
data with no logical ordering, the bars representing sectors may be arranged in any 
order. However, in the particular case where the categories in a bar chart are ordered 
by frequency in descending order and the chart includes a line displaying cumulative 
relative frequency, then it is called a Pareto Chart. The chart is often used to highlight 
dominant categories or the most important groups.

Bar charts provide a snapshot to show the comparison between categories of data. 
As shown in Exhibit 22, the sector in which the portfolio holds most stocks is the 
health care sector, with 435 stocks, followed by the energy sector, with 290 stocks. 
The sector in which the portfolio has the least number of stocks is utilities, with 55 
stocks. To compare categories more accurately, in some cases we may add the fre-
quency count to the right end of each bar (or the top end of each bar in the case of 
a vertical bar chart).

Exhibit 22   Frequency by Sector for Stocks in a Portfolio
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The bar chart shown in Exhibit 22 can present the frequency distribution of only 
one categorical variable. In the case of two categorical variables, we need an enhanced 
version of the bar chart, called a grouped bar chart (also known as a clustered bar 
chart), to show joint frequencies. Using the joint frequencies by sector and by level 
of market capitalization given in Exhibit 14, for example, we show how a grouped 
bar chart is constructed in Exhibit 23. While the y-axis still represents the same cat-
egorical variable (the distinct GICS sectors as in Exhibit 22), in Exhibit 23 three bars 
are clustered side- by- side within the same sector to represent the three respective 
levels of market capitalization. The bars within each cluster should be colored differ-
ently to distinguish between them, but the color schemes for the sub- groups must 
be identical across the sector clusters, as shown by the legend at the upper right of 
Exhibit 23. Additionally, the bars in each sector cluster must always be placed in the 
same order throughout the chart. It is easy to see that the small- cap heath care stocks 
are the sub- group with the highest frequency (275), and we can also see that small- 
cap stocks are the largest sub- group within each sector—except for utilities, where 
mid cap is the largest.
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Exhibit 23   Frequency by Sector and Level of Market Capitalization for 
Stocks in a Portfolio
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An alternative form for presenting the joint frequency distribution of two cat-
egorical variables is a stacked bar chart. In the vertical version of a stacked bar 
chart, the bars representing the sub- groups are placed on top of each other to form 
a single bar. Each subsection of the bar is shown in a different color to represent the 
contribution of each sub- group, and the overall height of the stacked bar represents 
the marginal frequency for the category. Exhibit 23 can be replotted in a stacked bar 
chart, as shown in Exhibit 24.

Exhibit 24   Frequency by Sector and Level of Market Capitalization in a 
Stacked Bar Chart
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We have shown that the frequency distribution of categorical data can be clearly 
and efficiently presented by using a bar chart. However, it is worth noting that appli-
cations of bar charts may be extended to more general cases when categorical data are 
associated with numerical data. For example, suppose we want to show a company’s 
quarterly profits over the past one year. In this case, we can plot a vertical bar chart 
where each bar represents one of the four quarters in a time order and its height 
indicates the value of profits for that quarter.

6.3 Tree- Map
In addition to bar charts and grouped bar charts, another graphical tool for displaying 
categorical data is a tree- map. It consists of a set of colored rectangles to represent 
distinct groups, and the area of each rectangle is proportional to the value of the 
corresponding group. For example, referring back to the marginal frequencies by 
GICS sector in Exhibit 14, we plot a tree- map in Exhibit 25 to represent the frequency 
distribution by sector for stocks in the portfolio. The tree- map clearly shows that 
health care is the sector with the largest number of stocks in the portfolio, which is 
represented by the rectangle with the largest area.

Exhibit 25   Tree- Map for Frequency Distribution by Sector in a Portfolio
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Note that this example also depicts one more categorical variable (i.e., level of 
market capitalization). The tree- map can represent data with additional dimensions 
by displaying a set of nested rectangles. To show the joint frequencies of sub- groups 
by sector and level of market capitalization, as given in Exhibit 14, we can split each 
existing rectangle for sector into three sub- rectangles to represent small- cap, mid- cap, 
and large- cap stocks, respectively. In this case, the area of each nested rectangle would 
be proportional to the number of stocks in each market capitalization sub- group. 
The exhibit clearly shows that small- cap health care is the sub- group with the largest 
number of stocks. It is worth noting a caveat for using tree- maps: Tree- maps become 
difficult to read if the hierarchy involves more than three levels.
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6.4 Word Cloud
So far, we have shown how to visualize the frequency distribution of numerical data 
or categorical data. However, can we find a chart to depict the frequency of unstruc-
tured data—particularly, textual data? A word cloud (also known as tag cloud) is a 
visual device for representing textual data. A word cloud consists of words extracted 
from a source of textual data, with the size of each distinct word being proportional 
to the frequency with which it appears in the given text. Note that common words 
(e.g., “a,” “it,” “the”) are generally stripped out to focus on key words that convey the 
most meaningful information. This format allows us to quickly perceive the most 
frequent terms among the given text to provide information about the nature of the 
text, including topic and whether or not the text conveys positive or negative news. 
Moreover, words conveying different sentiment may be displayed in different colors. 
For example, “profit” typically indicates positive sentiment so might be displayed in 
green, while “loss” typically indicates negative sentiment and may be shown in red.

Exhibit 26 is an excerpt from the Management’s Discussion and Analysis (MDA) 
section of the 10- Q filing for QXR Inc. for the quarter ended 31 March 20XX. Taking 
this text, we can create a word cloud, as shown in Exhibit 27. A quick glance at the word 
cloud tells us that the following words stand out (i.e., they were used most frequently 
in the MDA text): “billion,” “revenue,” “year,” “income,” “growth,” and “financial.” Note 
that specific words, such as “income” and “growth,” typically convey positive sentiment, 
as contrasted with such words as “loss” and “decline,” which typically convey negative 
sentiment. In conclusion, word clouds are a useful tool for visualizing textual data that 
can facilitate understanding the topic of the text as well as the sentiment it may convey.

Exhibit 26   Excerpt of MDA Section in Form 10- Q of QXR Inc. for Quarter 
Ended 31 March 20XX

MANAGEMENT’S DISCUSSION AND ANALYSIS OF FINANCIAL 
CONDITION AND RESULTS OF OPERATIONS
Please read the following discussion and analysis of our financial condition and 
results of operations together with our consolidated financial statements and 
related notes included under Part I, Item 1 of this Quarterly Report on Form 10- Q

Executive Overview of Results

Below are our key financial results for the three months ended March 31, 20XX 
(consolidated unless otherwise noted):

■■ Revenues of $36.3 billion and revenue growth of 17% year over year, con-
stant currency revenue growth of 19% year over year.

■■ Major segment revenues of $36.2 billion with revenue growth of 17% year 
over year and other segments’ revenues of $170 million with revenue 
growth of 13% year over year.

■■ Revenues from the United States, EMEA, APAC, and Other Americas 
were $16.5 billion, $11.8 billion, $6.1 billion, and $1.9 billion, respectively.

■■ Cost of revenues was $16.0 billion, consisting of TAC of $6.9 billion and 
other cost of revenues of $9.2 billion. Our TAC as a percentage of adver-
tising revenues were 22%.

■■ Operating expenses (excluding cost of revenues) were $13.7 billion, 
including the EC AFS fine of $1.7 billion.

■■ Income from operations was $6.6 billion
■■ Other income (expense), net, was $1.5 billion.
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■■ Effective tax rate was 18%
■■ Net income was $6.7 billion with diluted net income per share of $9.50.
■■ Operating cash flow was $12.0 billion.
■■ Capital expenditures were $4.6 billion.

Exhibit 27   Word Cloud Visualizing Excerpted Text in MDA Section in Form 
10- Q of QXR Inc.

6.5 Line Chart
A line chart is a type of graph used to visualize ordered observations. Often a line 
chart is used to display the change of data series over time. Note that the frequency 
polygon in Exhibit 20 and the cumulative frequency distribution chart in Exhibit 21 
are also line charts but used particularly in those instances for representing data 
frequency distributions.

Constructing a line chart is relatively straightforward: We first plot all the data 
points against horizontal and vertical axes and then connect the points by straight 
line segments. For example, to show the 10- day daily closing prices of ABC Inc. stock 
presented in Exhibit 5, we first construct a chart with the x-axis representing time (in 
days) and the y-axis representing stock price (in dollars). Next, plot each closing price 
as points against both axes, and then use straight line segments to join the points 
together, as shown in Exhibit 28.

Exhibit 26   (Continued)
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An important benefit of a line chart is that it facilitates showing changes in the 
data and underlying trends in a clear and concise way. This helps to understand the 
current data and also helps with forecasting the data series. In Exhibit 28, for example, 
it is easy to spot the price changes over the first 10 trading days since ABC’s initial 
public offering (IPO). We see that the stock price peaked on Day 3 and then traded 
lower. Following a partial recovery on Day 7, it declined steeply to around $50 on Day 
10. In contrast, although the one- dimensional data array table in Exhibit 5 displays 
the same values as the line chart, the data table by itself does not provide a quick 
snapshot of changes in the data or facilitate understanding underlying trends. This is 
why line charts are helpful for visualization, particularly in cases of large amounts of 
data (i.e., hundreds, or even thousands, of data points).

Exhibit 28   Daily Closing Prices of ABC Inc.’s Stock and Its Sector Index

Price ($)
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A line chart is also capable of accommodating more than one set of data points, 
which is especially helpful for making comparisons. We can add a line to represent 
each group of data (e.g., a competitor’s stock price or a sector index), and each 
line would have a distinct color or line pattern identified in a legend. For example, 
Exhibit 28 also includes a plot of ABC’s sector index (i.e., the sector index for which 
ABC stock is a member, like health care or energy) over the same period. The sector 
index is displayed with its own distinct color to facilitate comparison. Note also that 
because the sector index has a different range (approximately 6,230 to 6,390) than 
ABCs’ stock ($50 to $59 per share), we need a secondary y-axis to correctly display 
the sector index, which is on the right- hand side of the exhibit.

This comparison can help us understand whether ABC’s stock price movement 
over the period is due to potential mispricing of its share issuance or instead due to 
industry- specific factors that also affect its competitors’ stock prices. The comparison 
shows that over the period, the sector index moved in a nearly opposite trend versus 
ABC’s stock price movement. This indicates that the steep decline in ABC’s stock price 
is less likely attributable to sector- specific factors and more likely due to potential 
over- pricing of its IPO or to other company- specific factors.

When an observational unit (here, ABC Inc.) has more than two features (or 
variables) of interest, it would be useful to show the multi- dimensional data all in 
one chart to gain insights from a more holistic view. How can we add an additional 
dimension to a two- dimensional line chart? We can replace the data points with 
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varying- sized bubbles to represent a third dimension of the data. Moreover, these 
bubbles may even be color- coded to present additional information. This version of 
a line chart is called a bubble line chart.

Exhibit 7, for example, presented three types of quarterly data for ABC Inc. for 
use in a valuation analysis. We would like to plot two of them, revenue and earnings 
per share (EPS), over the two- year period. As shown in Exhibit 29, with the x-axis 
representing time (i.e., quarters) and the y-axis representing revenue in millions of 
dollars, we can plot the revenue data points against both axes to form a typical line 
chart. Next, each marker representing a revenue data point is replaced by a circular 
bubble with its size proportional to the magnitude of the EPS in the corresponding 
quarter. Moreover, the bubbles are colored in a binary scheme with green represent-
ing profits and red representing losses. In this way, the bubble line chart reflects the 
changes for both revenue and EPS simultaneously, and it also shows whether the EPS 
represents a profit or a loss.

Exhibit 29   Quarterly Revenue and EPS of ABC Incorporated

Revenue ($M)
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Q2 Year 1Q1 Year 1 Q4 Year 2Q3 Year 2Q2 Year 2Q1 Year 2Q3 Year 1 Q4 Year 1

Revenue EPS Profit EPS Loss

$1.37

$1.78 −$3.38
−$8.66

−$0.34

$3.89

−$2.88

−$3.98

As depicted, ABC’s earning were quite volatile during its initial two years as a 
public company. Earnings started off as a profit of $1.37/share but finished the first 
year with a big loss of −$8.66/share, during which time revenue experienced only small 
fluctuations. Furthermore, while revenues and earnings both subsequently recovered 
sharply—peaking in Q2 of Year 2—revenues then declined, and the company returned 
to significant losses (−3.98/share) by the end of Year 2.

6.6 Scatter Plot
A scatter plot is a type of graph for visualizing the joint variation in two numerical 
variables. It is a useful tool for displaying and understanding potential relationships 
between the variables.

A scatter plot is constructed with the x-axis representing one variable and the 
y-axis representing the other variable. It uses dots to indicate the values of the two 
variables for a particular point in time, which are plotted against the corresponding 
axes. Suppose an analyst is investigating potential relationships between sector index 
returns and returns for the broad market, such as the S&P 500 Index. Specifically, he 
or she is interested in the relative performance of two sectors, information technology 
(IT) and utilities, compared to the market index over a specific five- year period. The 
analyst has obtained the sector and market index returns for each month over the 
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five years under investigation and plotted the data points in the scatter plots, shown 
in Exhibit 30 for IT versus the S&P 500 returns and in Exhibit 31 for utilities versus 
the S&P 500 returns.

Despite their relatively straightforward construction, scatter plots convey lots of 
valuable information. First, it is important to inspect for any potential association 
between the two variables. The pattern of the scatter plot may indicate no apparent 
relationship, a linear association, or a non- linear relationship. A scatter plot with 
randomly distributed data points would indicate no clear association between the 
two variables. However, if the data points seem to align along a straight line, then 
there may exist a significant relationship among the variables. A positive (negative) 
slope for the line of data points indicates a positive (negative) association, meaning 
the variables move in the same (opposite) direction. Furthermore, the strength of the 
association can be determined by how closely the data points are clustered around 
the line. Tight (loose) clustering signals a potentially stronger (weaker) relationship.

Exhibit 30   Scatter Plot of Information Technology Sector Index Return vs. 
S&P 500 Index Return
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Exhibit 31   Scatter Plot of Utilities Sector Index Return vs. S&P 500 Index 
Return
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Examining Exhibit 30, we can see the returns of the IT sector are highly positively 
associated with S&P 500 Index returns because the data points are tightly clustered 
along a positively sloped line. Exhibit 31 tells a different story for relative performance 
of the utilities sector and S&P 500 index returns: The data points appear to be distrib-
uted in no discernable pattern, indicating no clear relationship among these variables. 
Second, observing the data points located toward the ends of each axis, which represent 
the maximum or minimum values, provides a quick sense of the data range. Third, 
assuming that a relationship among the variables is apparent, inspecting the scatter 
plot can help to spot extreme values (i.e., outliers). For example, an outlier data point 
is readily detected in Exhibit 30, as indicated by the arrow. As you will learn later in 
the CFA Program curriculum, finding these extreme values and handling them with 
appropriate measures is an important part of the financial modeling process.

Scatter plots are a powerful tool for finding patterns between two variables, for 
assessing data range, and for spotting extreme values. In practice, however, there 
are situations where we need to inspect for pairwise associations among many vari-
ables—for example, when conducting feature selection from dozens of variables to 
build a predictive model.

A scatter plot matrix is a useful tool for organizing scatter plots between pairs 
of variables, making it easy to inspect all pairwise relationships in one combined 
visual. For example, suppose the analyst would like to extend his or her investigation 
by adding another sector index. He or she can use a scatter plot matrix, as shown in 
Exhibit 32, which now incorporates four variables, including index returns for the 
S&P 500 and for three sectors: IT, utilities, and financials.
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Exhibit 32   Pairwise Scatter Plot Matrix
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The scatter plot matrix contains each combination of bivariate scatter plot (i.e., 
S&P 500 vs. each sector, IT vs. utilities, IT vs. financials, and financials vs. utilities) as 
well as univariate frequency distribution histograms for each variable plotted along 
the diagonal. In this way, the scatter plot matrix provides a concise visual summary of 
each variable and of potential relationships among them. Importantly, the construction 
of the scatter plot matrix is typically a built- in function in most major statistical soft-
ware packages, so it is relatively easy to implement. It is worth pointing out that the 
upper triangle of the matrix is the mirror image of the lower triangle, so the compact 
form of the scatter plot matrix that uses only the lower triangle is also appropriate.

With the addition of the financial sector, the bottom panel of Exhibit 32 reveals the 
following additional information, which can support sector allocation in the portfolio 
construction process:

■■ Strong positive relationship between returns of financial and S&P 500;
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■■ Positive relationship between returns of financial and IT; and
■■ No clear relationship between returns of financial and utilities.

It is important to note that despite their usefulness, scatter plots and scatter plot 
matrixes should not be considered as a substitute for robust statistical tests; rather, 
they should be used alongside such tests for best results.

6.7 Heat Map
A heat map is a type of graphic that organizes and summarizes data in a tabular 
format and represents them using a color spectrum. For example, given a portfolio, 
we can create a contingency table that summarizes the joint frequencies of the stock 
holdings by sector and by level of market capitalization, as in Exhibit 33.

Exhibit 33   Frequencies by Sector and Market Capitalization in Heat Map
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Cells in the chart are color- coded to differentiate high values from low values by 
using the color scheme defined in the color spectrum on the right side of the chart. 
As shown by the heat map, this portfolio has the largest exposure (in terms of num-
ber of stocks) to small- and mid- cap energy stocks. It has substantial exposures to 
large- cap communications services, mid- cap consumer staples, and small- cap utilities; 
however, exposure to the health care sector is limited. In sum, the heat map reveals 
this portfolio to be relatively well- diversified among sectors and market- cap levels. 
Besides their use in displaying frequency distributions, heat maps are commonly used 
for visualizing the degree of correlation among different variables.

EXAMPLE 6  

Evaluating Data Visuals

1 You have a cumulative absolute frequency distribution graph (similar to 
the one in Exhibit 21) of daily returns over a five- year period for an index 
of Asian equity markets.

 Interpret the meaning of the slope of such a graph.
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2 You are creating a word cloud for a visual representation of text on a 
company’s quarterly earnings announcements over the past three years. 
The word cloud uses font size to indicate word frequency. This particular 
company has experienced both quarterly profits and losses during the 
period under investigation.

 Describe how the word cloud might be used to convey information 
besides word frequency.

3 You are examining a scatter plot of monthly stock returns, similar to the 
one in Exhibit 30, for two technology companies: one is a hardware man-
ufacturer, and the other is a software developer. The scatter plot shows a 
strong positive association among their returns.

 Describe what other information the scatter plot can provide.
4 You are reading a vertical bar chart displaying the sales of a company over 

the past five years. The sales of the first four years seem nearly flat as the 
corresponding bars are nearly the same height, but the bar representing 
the sales of the most recent year is approximately three times as high as 
the other bars.

 Explain whether we can conclude that the sales of the fifth year tripled 
compared to sales in the earlier years.

Solution 1
The slope of the graph of a cumulative absolute frequency distribution reflects 
the change in the number of observations between two adjacent return bins. A 
steep (flat) slope indicates a large (small) change in the frequency of observations 
between adjacent return bins.

Solution 2
Color can add an additional dimension to the information conveyed in the word 
cloud. For example, red can be used for “losses” and other words conveying neg-
ative sentiment, and green can be used for “profit” and other words indicative 
of positive sentiment.

Solution 3
Besides the sign and degree of association of the stocks’ returns, the scatter 
plot can provide a visual representation of whether the association is linear or 
non- linear, the maximum and minimum values for the return observations, and 
an indication of which observations may have extreme values (i.e., are potential 
outliers).

Solution 4
Typically, the heights of bars in a vertical bar chart are proportional to the values 
that they represent. However, if the graph is using a truncated y-axis (i.e., one 
that does not start at zero), then values are not accurately represented by the 
height of bars. Therefore, we need to examine the y-axis of the bar chart before 
concluding that sales in the fifth year were triple the sales of the prior years.

6.8 Guide to Selecting among Visualization Types

f Describe How to Select among Visualization Types

We have introduced and discussed a variety of different visualization types that are 
regularly used in investment practice. When it comes to selecting a chart for visualizing 
data, the intended purpose is the key consideration: Is it for exploring and/or presenting 
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distributions or relationships, or is it for making comparisons? Given your intended 
purpose, the best selection is typically the simplest visual that conveys the message 
or achieves the specific goal. Exhibit 34 presents a flow chart for facilitating selection 
among the visualization types we have discussed. Finally, note that some visualization 
types, such as bar chart and heat map, may be suitable for several different purposes.

Exhibit 34   Flow Chart of Selecting Visualization Types
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Data visualization is a powerful tool to show data and gain insights into data. 
However, we need to be cautious that a graph could be misleading if data are mispre-
sented or the graph is poorly constructed. There are numerous different ways that may 
lead to a misleading graph. We list four typical pitfalls here that analysts should avoid.

First, an improper chart type is selected to present data, which would hinder the 
accurate interpretation of data. For example, to investigate the correlation between 
two data series, we can construct a scatter plot to visualize the joint variation between 
two variables. In contrast, plotting the two data series separately in a line chart would 
make it rather difficult to examine the relationship.

Second, data are selectively plotted in favor of the conclusion an analyst intends 
to draw. For example, data presented for an overly short time period may appear to 
show a trend that is actually noise—that is, variation within the data’s normal range 
if examining the data over a longer time period. So, presenting data for too short a 
time window may mistakenly point to a non- existing trend.

Third, data are improperly plotted in a truncated graph that has a y-axis that 
does not start at zero. In some situations, the truncated graph can create the false 
impression of significant differences when there is actually only a small difference. 
For example, suppose a vertical bar chart is used to compare annual revenues of two 
companies, one with $9 billion and the other with $10 billion. If the y-axis starts at 
$8 billion, then the bar heights would inaccurately imply that the latter company’s 
revenue is twice the former company’s revenue.

Last, but not least, is the improper scaling of axes. For example, given a line chart, 
setting a higher than necessary maximum on the y-axis tends to compress the graph 
into an area close to the x-axis. This causes the graph to appear to be less steep and 
less volatile than if it was properly plotted. In sum, analysts need to avoid these misuses 
of visualization when charting data and must ensure the ethical use of data visuals.
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EXAMPLE 7  

Selecting Visualization Types

1 A portfolio manager plans to buy several stocks traded on a small emerg-
ing market exchange but is concerned whether the market can provide 
sufficient liquidity to support her purchase order size. As the first step, 
she wants to analyze the daily trading volumes of one of these stocks over 
the past five years.

 Explain which type of chart can best provide a quick view of trading vol-
ume for the given period.

2 An analyst is building a model to predict stock market downturns. 
According to the academic literature and his practitioner knowledge and 
expertise, he has selected 10 variables as potential predictors. Before 
continuing to construct the model, the analyst would like to get a sense 
of how closely these variables are associated with the broad stock market 
index and whether any pair of variables are associated with each other.

 Describe the most appropriate visual to select for this purpose.
3 Central Bank members meet regularly to assess the economy and decide 

on any interest rate changes. Minutes of their meetings are published on 
the Central Bank’s website. A quantitative researcher wants to analyze the 
meeting minutes for use in building a model to predict future economic 
growth.

 Explain which type of chart is most appropriate for creating an overview 
of the meeting minutes.

4 A private investor wants to add a stock to her portfolio, so she asks her 
financial adviser to compare the three- year financial performances (by 
quarter) of two companies. One company experienced consistent revenue 
and earnings growth, while the other experienced volatile revenue and 
earnings growth, including quarterly losses.

 Describe the chart the adviser should use to best show these performance 
differences.

Solution to 1
The five- year history of daily trading volumes contains a large amount of 
numerical data. Therefore, a histogram is the best chart for grouping these data 
into frequency distribution bins and for showing a quick snapshot of the shape, 
center, and spread of the data’s distribution.

Solution to 2
To inspect for a potential relationship between two variables, a scatter plot is 
a good choice. But with 10 variables, plotting individual scatter plots is not an 
efficient approach. Instead, utilizing a scatter plot matrix would give the analyst 
a good overview in one comprehensive visual of all the pairwise associations 
between the variables.

Solution to 3
Since the meeting minutes consist of textual data, a word cloud would be the 
most suitable tool to visualize the textual data and facilitate the researcher’s 
understanding of the topic of the text as well as the sentiment, positive or neg-
ative, it may convey.
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Solution to 4
The best chart for making this comparison would be a bubble line chart using 
two different color lines to represent the quarterly revenues for each company. 
The bubble sizes would then indicate the magnitude of each company’s quarterly 
earnings, with green bubbles signifying profits and red bubbles indicating losses.

MEASURES OF CENTRAL TENDENCY

g Calculate and interpret measures of central tendency

So far, we have discussed methods we can use to organize and present data so that 
they are more understandable. The frequency distribution of an asset return series, 
for example, reveals much about the nature of the risks that investors may encounter 
in a particular asset. Although frequency distributions, histograms, and contingency 
tables provide a convenient way to summarize a series of observations, these methods 
are just a first step toward describing the data. In this section, we discuss the use of 
quantitative measures that explain characteristics of data. Our focus is on measures 
of central tendency and other measures of location. A measure of central tendency 
specifies where the data are centered. Measures of central tendency are probably more 
widely used than any other statistical measure because they can be computed and 
applied relatively easily. Measures of location include not only measures of central 
tendency but other measures that illustrate the location or distribution of data.

In the following subsections, we explain the common measures of central ten-
dency—the arithmetic mean, the median, the mode, the weighted mean, the geometric 
mean, and the harmonic mean. We also explain other useful measures of location, 
including quartiles, quintiles, deciles, and percentiles.

A statistic is a summary measure of a set of observations, and descriptive statis-
tics summarize the central tendency and spread variation in the distribution of data. 
If the statistic summarizes the set of all possible observations of a population, we 
refer to the statistic as a parameter. If the statistic summarizes a set of observations 
that is a subset of the population, we refer to the statistic as a sample statistic, often 
leav8ing off the word “sample” and simply referring to it as a statistic. While measures 
of central tendency and location can be calculated for populations and samples, our 
focus is on sample measures (i.e., sample statistics) as it is rare that an investment 
manager would be dealing with an entire population of data.

7.1 The Arithmetic Mean
Analysts and portfolio managers often want one number that describes a representative 
possible outcome of an investment decision. The arithmetic mean is one of the most 
frequently used measures of the center of data.

Definition of Arithmetic Mean. The arithmetic mean is the sum of the values 
of the observations divided by the number of observations.

7.1.1 The Sample Mean

The sample mean is the arithmetic mean or arithmetic average computed for a sam-
ple. As you will see, we use the terms “mean” and “average” interchangeably. Often, 
we cannot observe every member of a population; instead, we observe a subset or 
sample of the population.

7
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Sample Mean Formula. The sample mean or average, X  (read “X- bar”), is the 
arithmetic mean value of a sample:

X
X

n

i
i

n

� �
�

1

where n is the number of observations in the sample.

Equation 2 tells us to sum the values of the observations (Xi) and divide the sum 
by the number of observations. For example, if a sample of market capitalizations for 
six publicly traded Australian companies contains the values (in AUD billions) 35, 30, 
22, 18, 15, and 12, the sample mean market cap is 132/6 = A$22 billion. As previously 
noted, the sample mean is a statistic (that is, a descriptive measure of a sample).

Means can be computed for individual units or over time. For instance, the sample 
might be the return on equity (ROE) in a given year for a sample of 25 companies in 
the FTSE Eurotop 100, an index of Europe’s 100 largest companies. In this case, we 
calculate the mean ROE in that year as an average across 25 individual units. When 
we examine the characteristics of some units at a specific point in time (such as ROE 
for the FTSE Eurotop 100), we are examining cross- sectional data; the mean of these 
observations is the cross- sectional mean. If the sample consists of the historical 
monthly returns on the FTSE Eurotop 100 for the past five years, however, then we 
have time- series data; the mean of these observations is the time- series mean. We 
will examine specialized statistical methods related to the behavior of time series in 
the reading on time- series analysis.

Except in cases of large datasets with many observations, we should not expect any 
of the actual observations to equal the mean; sample means provide only a summary 
of the data being analyzed. Also, although in some cases the number of values below 
the mean is quite close to the number of values above the mean, this need not be 
the case. As an analyst, you will often need to find a few numbers that describe the 
characteristics of the distribution, and we will consider more later. The mean is gen-
erally the statistic that you use as a measure of the typical outcome for a distribution. 
You can then use the mean to compare the performance of two different markets. 
For example, you might be interested in comparing the stock market performance of 
investments in Asia Pacific with investments in Europe. You can use the mean returns 
in these markets to compare investment results.

EXAMPLE 8  

Calculating a Cross- Sectional Mean
Suppose we want to examine the performance of a sample of selected stock 
indexes from 11 different countries. The 52- week percentage change is reported 
in Exhibit 35 for Year 1, Year 2, and Year 3 for the sample of indexes.

Exhibit 35   Annual Returns for Years 1 to 3 for 
Selected Countries’ Stock Indexes

52- Week Return (%)

Index Year 1 Year 2 Year 3

Country A −15.6 −5.4 6.1
Country B 7.8 6.3 −1.5

(2)
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52- Week Return (%)

Index Year 1 Year 2 Year 3

Country C 5.3 1.2 3.5
Country D −2.4 −3.1 6.2
Country E −4.0 −3.0 3.0
Country F 5.4 5.2 −1.0
Country G 12.7 6.7 −1.2
Country H 3.5 4.3 3.4
Country I 6.2 7.8 3.2
Country J 8.1 4.1 −0.9
Country K 11.5 3.4 1.2

Country
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–20 15–10–15 –5 1050

Annual Return (%)

Year 3Year 2Year 1

Using the data provided, calculate the sample mean return for the 11 indexes 
for each year.

Solution:
For Year 3, the calculation applies Equation 2 to the returns for Year 3: (6.1 − 1.5 + 
3.5 + 6.2 + 3.0 − 1.0 − 1.2 + 3.4 + 3.2 − 0.9 + 1.2)/11 = 22.0/11 = 2.0%. Using 
a similar calculation, the sample mean is 3.5% for Year 1 and 2.5% for Year 2.

7.1.2 Properties of the Arithmetic Mean

The arithmetic mean can be likened to the center of gravity of an object. Exhibit 36 
expresses this analogy graphically by plotting nine hypothetical observations on a 
bar. The nine observations are 2, 4, 4, 6, 10, 10, 12, 12, and 12; the arithmetic mean is 
72/9 = 8. The observations are plotted on the bar with various heights based on their 
frequency (that is, 2 is one unit high, 4 is two units high, and so on). When the bar is 
placed on a fulcrum, it balances only when the fulcrum is located at the point on the 
scale that corresponds to the arithmetic mean.

Exhibit 35   (Continued)
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Exhibit 36   Center of Gravity Analogy for the Arithmetic Mean
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As analysts, we often use the mean return as a measure of the typical outcome for 
an asset. As in Example 8, however, some outcomes are above the mean and some are 
below it. We can calculate the distance between the mean and each outcome, which is 
the deviation. Mathematically, it is always true that the sum of the deviations around 
the mean equals 0. We can see this by using the definition of the arithmetic mean 

shown in Equation 2, multiplying both sides of the equation by n: nX Xi
i

n
�

�
�

1
. The 

sum of the deviations from the mean is calculated as follows:

X X X X X nXi
i

n

i
i

n

i

n

i
i

n
�� � � � � � �

� � � �
� � � �

1 1 1 1
0

Deviations from the arithmetic mean are important information because they 
indicate risk. The concept of deviations around the mean forms the foundation for the 
more complex concepts of variance, skewness, and kurtosis, which we will discuss later.

A property and potential drawback of the arithmetic mean is its sensitivity to 
extreme values, or outliers. Because all observations are used to compute the mean and 
are given equal weight (i.e., importance), the arithmetic mean can be pulled sharply 
upward or downward by extremely large or small observations, respectively. For 
example, suppose we compute the arithmetic mean of the following seven numbers: 
1, 2, 3, 4, 5, 6, and 1,000. The mean is 1,021/7 = 145.86, or approximately 146. Because 
the magnitude of the mean, 146, is so much larger than most of the observations (the 
first six), we might question how well it represents the location of the data. Perhaps 
the most common approach in such cases is to report the median, or middle value, 
in place of or in addition to the mean.

7.1.3 Outliers

In practice, although an extreme value or outlier in a financial dataset may just repre-
sent a rare value in the population, it may also reflect an error in recording the value 
of an observation or an observation generated from a different population from that 
producing the other observations in the sample. In the latter two cases, in particu-
lar, the arithmetic mean could be misleading. So, what do we do? The first step is to 
examine the data, either by inspecting the sample observations if the sample is not 
too large or by using visualization approaches. Once we are comfortable that we have 
identified and eliminated errors (that is, we have “cleaned” the data), we can then 
address what to do with extreme values in the sample. When dealing with a sample 
that has extreme values, there may be a possibility of transforming the variable (e.g., 
a log transformation) or of selecting another variable that achieves the same purpose. 
However, if alternative model specifications or variable transformations are not pos-
sible, then here are three options for dealing with extreme values:

Option 1 Do nothing; use the data without any adjustment.
Option 2 Delete all the outliers.
Option 3 Replace the outliers with another value.
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The first option is appropriate if the values are legitimate, correct observations, and 
it is important to reflect the whole of the sample distribution. Outliers may contain 
meaningful information, so excluding or altering these values may reduce valuable 
information. Further, because identifying a data point as extreme leaves it up to the 
judgment of the analyst, leaving in all observations eliminates that need to judge a 
value as extreme.

The second option excludes the extreme observations. One measure of central 
tendency in this case is the trimmed mean, which is computed by excluding a stated 
small percentage of the lowest and highest values and then computing an arithmetic 
mean of the remaining values. For example, a 5% trimmed mean discards the lowest 
2.5% and the highest 2.5% of values and computes the mean of the remaining 95% 
of values. A trimmed mean is used in sports competitions when judges’ lowest and 
highest scores are discarded in computing a contestant’s score.

The third option involves substituting values for the extreme values. A measure 
of central tendency in this case is the winsorized mean. It is calculated by assigning 
a stated percentage of the lowest values equal to one specified low value and a stated 
percentage of the highest values equal to one specified high value, and then it com-
putes a mean from the restated data. For example, a 95% winsorized mean sets the 
bottom 2.5% of values equal to the value at or below which 2.5% of all the values lie 
(as will be seen shortly, this is called the “2.5th percentile” value) and the top 2.5% 
of values equal to the value at or below which 97.5% of all the values lie (the “97.5th 
percentile” value).

In Exhibit 37, we show the differences among these options for handling outliers 
using daily returns for the fictitious Euro- Asia- Africa (EAA) Equity Index in Exhibit 11.

Exhibit 37   Handling Outliers: Daily Returns to an Index

Consider the fictitious EAA Equity Index. Using daily returns on the EAA Equity 
Index for the period of five years, consisting of 1,258 trading days, we can see 
the effect of trimming and winsorizing the data:

Arithmetic 
Mean 

(%)

Trimmed Mean 
[Trimmed 5%] 

(%)

Winsorized 
Mean 
[95%] 

(%)

Mean 0.035 0.048 0.038
Number of Observations 1,258 1,194 1,258

The trimmed mean eliminates the lowest 2.5% of returns, which in this 
sample is any daily return less than −1.934%, and it eliminates the highest 2.5%, 
which in this sample is any daily return greater than 1.671%. The result of this 
trimming is that the mean is calculated using 1,194 observations instead of the 
original sample’s 1,258 observations.

The winsorized mean substitutes −1.934% for any return below −1.934 and 
substitutes 1.671% for any return above 1.671. The result in this case is that the 
trimmed and winsorized means are above the arithmetic mean.

7.2 The Median
A second important measure of central tendency is the median.

Definition of Median. The median is the value of the middle item of a set 
of items that has been sorted into ascending or descending order. In an odd- 
numbered sample of n items, the median is the value of the item that occupies 
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the (n + 1)/2 position. In an even- numbered sample, we define the median as 
the mean of the values of items occupying the n/2 and (n + 2)/2 positions (the 
two middle items).

Suppose we have a return on assets (in %) for each of three companies: 0.0, 2.0, 
and 2.1. With an odd number of observations (n = 3), the median occupies the (n + 
1)/2 = 4/2 = 2nd position. The median is 2.0%. The value of 2.0% is the “middlemost” 
observation: One lies above it, and one lies below it. Whether we use the calculation 
for an even- or odd- numbered sample, an equal number of observations lie above 
and below the median. A distribution has only one median.

A potential advantage of the median is that, unlike the mean, extreme values do 
not affect it. For example, if a sample consists of the observations of 1, 2, 3, 4, 5, 6 and 
1,000, the median is 4. The median is not influenced by the extremely large outcome 
of 1,000. In other words, the median is affected less by outliers than the mean and 
therefore is useful in describing data that follow a distribution that is not symmetric, 
such as revenues.

The median, however, does not use all the information about the size of the obser-
vations; it focuses only on the relative position of the ranked observations. Calculating 
the median may also be more complex. To do so, we need to order the observations 
from smallest to largest, determine whether the sample size is even or odd, and then 
on that basis, apply one of two calculations. Mathematicians express this disadvantage 
by saying that the median is less mathematically tractable than the mean.

We use the data from Exhibit 35 to demonstrate finding the median, reproduced 
in Exhibit 38 in ascending order of the return for Year 3, with the ranked position 
from 1 (lowest) to 11 (highest) indicated. Because this sample has 11 observations, 
the median is the value in the sorted array that occupies the (11 + 1)/2 = 6th position. 
Country E’s index occupies the sixth position and is the median. The arithmetic mean 
for Year 3 for this sample of indexes is 2.0%, whereas the median is 3.0.

Exhibit 38   Returns on Selected Country Stock Indexes for 
Year 3 in Ascending Order

Index 
Year 3 

Return (%) Position

Country B −1.5 1
Country G −1.2 2
Country F −1.0 3
Country J −0.9 4
Country K 1.2 5
Country E 3.0 ← 6
Country I 3.2 7
Country H 3.4 8
Country C 3.5 9
Country A 6.1 10
Country D 6.2 11
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Country

A

D

C

H

E

I

K

J

F

G

B

–2 82 640

Return (%)

Median

If a sample has an even number of observations, the median is the mean of the two 
values in the middle. For example, if our sample in Exhibit 38 had 12 indexes instead 
of 11, the median would be the mean of the values in the sorted array that occupy 
the sixth and the seventh positions.

7.3 The Mode
The third important measure of central tendency is the mode.

Definition of Mode. The mode is the most frequently occurring value in a 
distribution.

A distribution can have more than one mode, or even no mode. When a distribu-
tion has a single value that is most frequently occurring, the distribution is said to be 
unimodal. If a distribution has two most frequently occurring values, then it has two 
modes and is called bimodal. If the distribution has three most frequently occurring 
values, then it is trimodal. When all the values in a dataset are different, the distri-
bution has no mode because no value occurs more frequently than any other value.

Stock return data and other data from continuous distributions may not have a 
modal outcome. When such data are grouped into bins, however, we often find an 
interval (possibly more than one) with the highest frequency: the modal interval (or 
intervals). Consider the frequency distribution of the daily returns for the EAA Equity 
Index over five years that we looked at in Exhibit 11. A histogram for the frequency 
distribution of these daily returns is shown in Exhibit 39. The modal interval always 
has the highest bar in the histogram; in this case, the modal interval is 0.0 to 0.9%, 
and this interval has 493 observations out of a total of 1,258 observations.

Notice that this histogram in Exhibit 39 looks slightly different from the one in 
Exhibit 11, since this one has 11 bins and follows the seven- step procedure exactly. 
Thus, the bin width is 0.828 [= (5.00 − −4.11)/11], and the first bin begins at the 
minimum value of −4.11%. It was noted previously that for ease of interpretation, in 
practice bin width is often rounded up to the nearest whole number; the first bin can 
start at the nearest whole number below the minimum value. These refinements and 
the use of 10 bins were incorporated into the histogram in Exhibit 11, which has a 
modal interval of 0.0% to 1.0%.
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Exhibit 39   Histogram of Daily Returns on the EAA Equity Index
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The mode is the only measure of central tendency that can be used with nominal 
data. For example, when we categorize investment funds into different styles and 
assign a number to each style, the mode of these categorized data is the most frequent 
investment fund style.

7.4 Other Concepts of Mean
Earlier we explained the arithmetic mean, which is a fundamental concept for describ-
ing the central tendency of data. An advantage of the arithmetic mean over two other 
measures of central tendency, the median and mode, is that the mean uses all the 
information about the size of the observations. The mean is also relatively easy to 
work with mathematically.

However, other concepts of mean are very important in investments. In the fol-
lowing sections, we discuss such concepts.

7.4.1 The Weighted Mean

The concept of weighted mean arises repeatedly in portfolio analysis. In the arithmetic 
mean, all sample observations are equally weighted by the factor 1/n. In working with 
portfolios, we often need the more general concept of weighted mean to allow for 
different (i.e., unequal) weights on different observations.

To illustrate the weighted mean concept, an investment manager with $100 million 
to invest might allocate $70 million to equities and $30 million to bonds. The portfolio, 
therefore, has a weight of 0.70 on stocks and 0.30 on bonds. How do we calculate the 
return on this portfolio? The portfolio’s return clearly involves an averaging of the 
returns on the stock and bond investments. The mean that we compute, however, 
must reflect the fact that stocks have a 70% weight in the portfolio and bonds have a 
30% weight. The way to reflect this weighting is to multiply the return on the stock 
investment by 0.70 and the return on the bond investment by 0.30, then sum the two 
results. This sum is an example of a weighted mean. It would be incorrect to take an 
arithmetic mean of the return on the stock and bond investments, equally weighting 
the returns on the two asset classes.
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Weighted Mean Formula. The weighted mean X w  (read “X-bar sub-w”), for a 
set of observations X1, X2, …, Xn with corresponding weights of w1, w2, …, wn, 
is computed as:

X w Xw i i
i

n
�

�
�

1

where the sum of the weights equals 1; that is, wi
i
� � 1.

In the context of portfolios, a positive weight represents an asset held long and a 
negative weight represents an asset held short.

The formula for the weighted mean can be compared to the formula for the arith-
metic mean. For a set of observations X1, X2, …, Xn, let the weights w1, w2, …, wn all 

equal 1/n. Under this assumption, the formula for the weighted mean is 1
1

n X i
i

n

� �
�

� . This 

is the formula for the arithmetic mean. Therefore, the arithmetic mean is a special 
case of the weighted mean in which all the weights are equal.

EXAMPLE 9   

Calculating a Weighted Mean
Using the country index data shown in Exhibit  35, consider a portfolio that 
consists of three funds that track three countries’ indexes: County C, Country 
G, and Country K. The portfolio weights and index returns are as follows:

Index Tracked by Fund
Allocation 

(%)

Annual Return (%)

Year 1 Year 2 Year 3

Country C 25% 5.3 1.2 3.5
Country G 45% 12.7 6.7 −1.2
Country K 30% 11.5 3.4 1.2

Using the information provided, calculate the returns on the portfolio for 
each year.

Solution
Converting the percentage asset allocation to decimal form, we find the mean 
return as the weighted average of the funds’ returns. We have:

Mean portfolio return for Year 1 = 0.25 (5.3) + 0.45 (12.7) + 0.30(11.5)
= 10.50%

Mean portfolio return for Year 2 = 0.25 (1.2) + 0.45 (6.7) + 0.30 (3.4)
= 4.34%

Mean portfolio return for Year 3 = 0.25 (3.5) + 0.45 (−1.2) + 0.30 (1.2)
= 0.70%

This example illustrates the general principle that a portfolio return is a weighted 
sum. Specifically, a portfolio’s return is the weighted average of the returns on the 
assets in the portfolio; the weight applied to each asset’s return is the fraction of the 
portfolio invested in that asset.

(3)
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Market indexes are computed as weighted averages. For market- capitalization 
weighted indexes, such as the CAC- 40 in France, the TOPIX in Japan, or the S&P 
500 in the United States, each included stock receives a weight corresponding to its 
market value divided by the total market value of all stocks in the index.

Our illustrations of weighted mean use past data, but they might just as well use 
forward- looking data. When we take a weighted average of forward- looking data, the 
weighted mean is the expected value. Suppose we make one forecast for the year- 
end level of the S&P 500 assuming economic expansion and another forecast for the 
year- end level of the S&P 500 assuming economic contraction. If we multiply the first 
forecast by the probability of expansion and the second forecast by the probability of 
contraction and then add these weighted forecasts, we are calculating the expected 
value of the S&P 500 at year- end. If we take a weighted average of possible future 
returns on the S&P 500, where the weights are the probabilities, we are computing the 
S&P 500’s expected return. The probabilities must sum to 1, satisfying the condition 
on the weights in the expression for weighted mean, Equation 3.

7.4.2 The Geometric Mean

The geometric mean is most frequently used to average rates of change over time or 
to compute the growth rate of a variable. In investments, we frequently use the geo-
metric mean to either average a time series of rates of return on an asset or a portfolio 
or to compute the growth rate of a financial variable, such as earnings or sales. The 
geometric mean is defined by the following formula.

Geometric Mean Formula. The geometric mean, XG , of a set of observations 
X1, X2, …, Xn is:

X X X X XG nn= 1 2 3 with Xi ≥ 0 for i = 1, 2, …, n.

Equation 4 has a solution, and the geometric mean exists only if the product under 
the square root sign is non- negative. Therefore, we must impose the restriction that all 
the observations Xi are greater than or equal to zero. We can solve for the geometric 
mean directly with any calculator that has an exponentiation key (on most calculators, 
yx). We can also solve for the geometric mean using natural logarithms. Equation 4 
can also be stated as

ln lnX
n

X X X XG n� � �1
1 2 3

or, because the logarithm of a product of terms is equal to the sum of the logarithms 
of each of the terms, as

ln
ln

X
X

nG

i
i

n

� �
�

1

When we have computed lnXG , then X eG
XG= ln  (on most calculators, the key for 

this step is ex).
Risky assets can have negative returns up to −100% (if their price falls to zero), so 

we must take some care in defining the relevant variables to average in computing a 
geometric mean. We cannot just use the product of the returns for the sample and 
then take the nth root because the returns for any period could be negative. We must 
recast the returns to make them positive. We do this by adding 1.0 to the returns 
expressed as decimals, where Rt represents the return in period t. The term (1 + Rt) 
represents the year- ending value relative to an initial unit of investment at the begin-
ning of the year. As long as we use (1 + Rt), the observations will never be negative 

(4)
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because the biggest negative return is −100%. The result is the geometric mean of 
1 + Rt; by then subtracting 1.0 from this result, we obtain the geometric mean of the 
individual returns Rt.

An equation that summarizes the calculation of the geometric mean return, RG, is 
a slightly modified version of Equation 4 in which Xi represents “1 + return in decimal 
form.” Because geometric mean returns use time series, we use a subscript t indexing 
time as well. We calculate one plus the geometric mean return as:

1 1 1 11 2� � �� � �� � �� �R R R RG TT


We can represent this more compactly as:

1 1
1

1

� � �� �
�

�
�
�

�

�
�
��

�R RG t
t

T T

where the capital Greek letter ‘pi,’ Π, denotes the arithmetical operation of mul-
tiplication of the T terms. Once we subtract one, this becomes the formula for the 
geometric mean return.

For example, the returns on Country B’s index are given in Exhibit 35 as 7.8, 6.3, 
and −1.5%. Putting the returns into decimal form and adding 1.0 produces 1.078, 
1.063, and 0.985. Using Equation  4, we have 1 078 1 063 0 985 1 1287253 3. . . .� �� �� � �  = 
1.041189. This number is 1 plus the geometric mean rate of return. Subtracting 1.0 
from this result, we have 1.041189 − 1.0 = 0.041189, or approximately 4.12%. This is 
lower than the arithmetic mean for County B’s index of 4.2%.

Geometric Mean Return Formula. Given a time series of holding period 
returns Rt, t = 1, 2, …, T, the geometric mean return over the time period 
spanned by the returns R1 through RT is:

R RG t
t

T T
� �� �
�

�
�
�

�

�
�
�

�
�
� 1 1

1

1

We can use Equation 5 to solve for the geometric mean return for any return data 
series. Geometric mean returns are also referred to as compound returns. If the returns 
being averaged in Equation 5 have a monthly frequency, for example, we may call the 
geometric mean monthly return the compound monthly return. The next example 
illustrates the computation of the geometric mean while contrasting the geometric 
and arithmetic means.

EXAMPLE 10   

Geometric and Arithmetic Mean Returns
Using the data in Exhibit 35, calculate the arithmetic mean and the geometric 
mean returns over the three years for each of the three stock indexes: those of 
Country D, Country E, and Country F.

Solution
The arithmetic mean returns calculations are:

(5)
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Annual Return (%) Sum 

Ri
i�
�

1

3

Arithmetic 
MeanYear 1 Year 2 Year 3

Country D −2.4 −3.1 6.2 0.7 0.233
Country E −4.0 −3.0 3.0 −4.0 −1.333
Country F 5.4 5.2 −1.0 9.6 3.200

Geometric mean returns calculations are:

1 + Return in Decimal 
Form 

(1 + Rt)
Product 

1 �� �� Rt
t

T

3rd root 

1
3

1
3

�� �
�

�
�
�

�

�
�
�

� Rt
t

Geometric 
mean 

return (%)
Year 

1
Year 

2
Year 

3

Country D 0.976 0.969 1.062 1.00438 1.00146 0.146
Country E 0.960 0.970 1.030 0.95914 0.98619 −1.381
Country F 1.054 1.052 0.990 1.09772 1.03157 3.157

In Example 10, the geometric mean return is less than the arithmetic mean return 
for each country’s index returns. In fact, the geometric mean is always less than or 
equal to the arithmetic mean. The only time that the two means will be equal is when 
there is no variability in the observations—that is, when all the observations in the 
series are the same.

In general, the difference between the arithmetic and geometric means increases 
with the variability within the sample; the more disperse the observations, the greater 
the difference between the arithmetic and geometric means. Casual inspection of the 
returns in Exhibit 35 and the associated graph of means suggests a greater variability for 
Country A’s index relative to the other indexes, and this is confirmed with the greater 
deviation of the geometric mean return (−5.38%) from the arithmetic mean return 
(−4.97%), as we show in Exhibit 40. How should the analyst interpret these results?
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Exhibit 40   Arithmetic and Geometric Mean Returns for Country Stock 
Indexes: Years 1 to 3

Country

B
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I
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K

6 8–4 –2 4 620

Mean Return (%)

Geometric Mean Arithmetic Average

The geometric mean return represents the growth rate or compound rate of return 
on an investment. One unit of currency invested in a fund tracking the Country B 
index at the beginning of Year 1 would have grown to (1.078)(1.063)(0.985) = 1.128725 
units of currency, which is equal to 1 plus the geometric mean return compounded 
over three periods: [1 + 0.041189]3 = 1.128725, confirming that the geometric mean 
is the compound rate of return. With its focus on the profitability of an investment 
over a multi- period horizon, the geometric mean is of key interest to investors. The 
arithmetic mean return, focusing on average single- period performance, is also of 
interest. Both arithmetic and geometric means have a role to play in investment 
management, and both are often reported for return series.

For reporting historical returns, the geometric mean has considerable appeal 
because it is the rate of growth or return we would have to earn each year to match 
the actual, cumulative investment performance. Suppose we purchased a stock for 
€100 and two years later it was worth €100, with an intervening year at €200. The 
geometric mean of 0% is clearly the compound rate of growth during the two years, 
which we can confirm by compounding the returns: [(1 + 1.00)(1 − 0.50)]1/2 − 1 = 
0%. Specifically, the ending amount is the beginning amount times (1 + RG)2. The 
geometric mean is an excellent measure of past performance.

The arithmetic mean, which is [100% + −50%]/2  = 25% in the above example, 
can distort our assessment of historical performance. As we noted previously, the 
arithmetic mean is always greater than or equal to the geometric mean. If we want to 
estimate the average return over a one- period horizon, we should use the arithmetic 
mean because the arithmetic mean is the average of one- period returns. If we want 
to estimate the average returns over more than one period, however, we should use 
the geometric mean of returns because the geometric mean captures how the total 
returns are linked over time. In a forward- looking context, a financial analyst calcu-
lating expected risk premiums may find that the weighted mean is appropriate, with 
the probabilities of the possible outcomes used as the weights.

Dispersion in cash flows or returns causes the arithmetic mean to be larger than 
the geometric mean. The more dispersion in the sample of returns, the more diver-
gence exists between the arithmetic and geometric means. If there is zero variance in 
a sample of observations, the geometric and arithmetic return are equal.
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7.4.3 The Harmonic Mean

The arithmetic mean, the weighted mean, and the geometric mean are the most fre-
quently used concepts of mean in investments. A fourth concept, the harmonic 
mean, X H , is another measure of central tendency. The harmonic mean is appropriate 
in cases in which the variable is a rate or a ratio. The terminology “harmonic” arises 
from its use of a type of series involving reciprocals known as a harmonic series.

Harmonic Mean Formula. The harmonic mean of a set of observations X1, X2, 
…, Xn is:

X n

X
H

i
i

n�

� �
�
� 1

1

with Xi > 0 for i = 1, 2, …, n.

The harmonic mean is the value obtained by summing the reciprocals of the observa-
tions—terms of the form 1/Xi—then averaging that sum by dividing it by the number 
of observations n, and, finally, taking the reciprocal of the average.

The harmonic mean may be viewed as a special type of weighted mean in which an 
observation’s weight is inversely proportional to its magnitude. For example, if there 
is a sample of observations of 1, 2, 3, 4, 5, 6, and 1,000, the harmonic mean is 2.8560. 
Compared to the arithmetic mean of 145.8571, we see the influence of the outlier (the 
1,000) to be much less than in the case of the arithmetic mean. So, the harmonic mean 
is quite useful as a measure of central tendency in the presence of outliers.

The harmonic mean is used most often when the data consist of rates and ratios, 
such as P/Es. Suppose three peer companies have P/Es of 45, 15, and 15. The arithmetic 
mean is 25, but the harmonic mean, which gives less weight to the P/E of 45, is 19.3.

EXAMPLE 11   

Harmonic Mean Returns and the Returns on Selected 
Country Stock Indexes
Using data in Exhibit 35, calculate the harmonic mean return over the 2016–2018 
period for three stock indexes: Country D, Country E, and Country F.

Calculating the Harmonic Mean for the Indexes

Index

Inverse of 1 + Return, or 
1

1 �� �Xi  
where Xi is the return 

in decimal form 1 Xi
i

n
� �

 

n

Xi
i

n
1�

�

Harmonic 
Mean (%)Year 1 Year 2 Year 3

Country D 1.02459 1.03199 0.94162 2.99820 1.00060 0.05999
Country E 1.04167 1.03093 0.97087 3.04347 0.98572 −1.42825
Country F 0.94877 0.95057 1.01010 2.90944 1.03113 3.11270

(6)
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Comparing the three types of means, we see the arithmetic mean is higher 
than the geometric mean return, and the geometric mean return is higher than 
the harmonic mean return. We can see the differences in these means in the 
following graph:

Harmonic, Geometric, and Arithmetic Means of Selected Country 
Indexes

Country

D

E

F

–2 4–1 21 3

Mean Return (%)

Harmonic Geometric Mean Arithmetic

0

0.233
0.146
0.060

−1.333
−1.381
−1.428

3.200
3.157
3.113

The harmonic mean is a relatively specialized concept of the mean that is appro-
priate for averaging ratios (“amount per unit”) when the ratios are repeatedly applied 
to a fixed quantity to yield a variable number of units. The concept is best explained 
through an illustration. A well- known application arises in the investment strategy 
known as cost averaging, which involves the periodic investment of a fixed amount 
of money. In this application, the ratios we are averaging are prices per share at 
different purchase dates, and we are applying those prices to a constant amount of 
money to yield a variable number of shares. An illustration of the harmonic mean to 
cost averaging is provided in Example 12.

EXAMPLE 12   

Cost Averaging and the Harmonic Mean
Suppose an investor purchases €1,000 of a security each month for n = 2 months. 
The share prices are €10 and €15 at the two purchase dates. What is the average 
price paid for the security?

Purchase in the first month = €1,000/€10 = 100 shares
Purchase in the second month = €1,000/€15 = 66.67 shares

The purchases are 166.67 shares in total, and the price paid per share is 
€2,000/166.67 = €12.

The average price paid is in fact the harmonic mean of the asset’s prices at 
the purchase dates. Using Equation 6, the harmonic mean price is 2/[(1/10) + 
(1/15)] = €12. The value €12 is less than the arithmetic mean purchase price 
(€10 + €15)/2 = €12.5.

However, we could find the correct value of €12 using the weighted mean 
formula, where the weights on the purchase prices equal the shares purchased 
at a given price as a proportion of the total shares purchased. In our example, 
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the calculation would be (100/166.67)€10.00 + (66.67/166.67)€15.00 = €12. If 
we had invested varying amounts of money at each date, we could not use the 
harmonic mean formula. We could, however, still use the weighted mean formula.

h Evaluate alternative definitions of mean to address an investment problem

Since they use the same data but involve different progressions in their respective 
calculations (that is, arithmetic, geometric, and harmonic progressions) the arithmetic, 
geometric, and harmonic means are mathematically related to one another. While we 
will not go into the proof of this relationship, the basic result follows:

Arithmetic mean × Harmonic mean = Geometric mean2.

However, the key question is: Which mean to use in what circumstances?

EXAMPLE 13   

Calculating the Arithmetic, Geometric, and Harmonic 
Means for P/Es
Each year in December, a securities analyst selects her 10 favorite stocks for the 
next year. Exhibit 41 gives the P/E, the ratio of share price to projected earnings 
per share (EPS), for her top- 10 stock picks for the next year.

Exhibit 41   Analyst’s 10 Favorite Stocks for Next Year

Stock P/E

Stock 1 22.29
Stock 2 15.54
Stock 3 9.38
Stock 4 15.12
Stock 5 10.72
Stock 6 14.57
Stock 7 7.20
Stock 8 7.97
Stock 9 10.34
Stock 10 8.35

For these 10 stocks,

1 Calculate the arithmetic mean P/E.
2 Calculate the geometric mean P/E.
3 Calculate the harmonic mean P/E.
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Solution

Stock P/E
Natural Log of the P/E 

ln(Xi)
Inverse of the P/E 

1/Xi

Stock 1 22.29 3.1041 0.0449
Stock 2 15.54 2.7434 0.0644
Stock 3 9.38 2.2386 0.1066
Stock 4 15.12 2.7160 0.0661
Stock 5 10.72 2.3721 0.0933
Stock 6 14.57 2.6790 0.0686
Stock 7 7.20 1.9741 0.1389
Stock 8 7.97 2.0757 0.1255
Stock 9 10.34 2.3360 0.0967
Stock 10 8.35 2.1223 0.1198
Sum 121.48 24.3613 0.9247

1 The arithmetic mean is 121.48/10 = 12.1480.

2 The geometric mean is e24 3613 10.  = 11.4287.
3 The harmonic mean is 10/0.9247 = 10.8142.

A mathematical fact concerning the harmonic, geometric, and arithmetic means is 
that unless all the observations in a dataset have the same value, the harmonic mean 
is less than the geometric mean, which, in turn, is less than the arithmetic mean. The 
choice of which mean to use depends on many factors, as we describe in Exhibit 42:

■■ Are there outliers that we want to include?
■■ Is the distribution symmetric?
■■ Is there compounding?
■■ Are there extreme outliers?
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Exhibit 42   Deciding Which Central Tendency Measure to Use

Include all
values,

including
outliers?

Collect Sample

Compounding?

Extreme
outliers?

Yes

Yes

Yes

Geometric Mean

Arithmetic Mean

Harmonic mean,
Trimmed mean,
Winsorized mean

QUANTILES

 i. Calculate quantiles and interpret related visualizations

Having discussed measures of central tendency, we now examine an approach to 
describing the location of data that involves identifying values at or below which 
specified proportions of the data lie. For example, establishing that 25, 50, and 75% 
of the annual returns on a portfolio are at or below the values −0.05, 0.16, and 0.25, 
respectively, provides concise information about the distribution of portfolio returns. 
Statisticians use the word quantile (or fractile) as the most general term for a value at 
or below which a stated fraction of the data lies. In the following section, we describe 
the most commonly used quantiles—quartiles, quintiles, deciles, and percentiles—and 
their application in investments.

8.1 Quartiles, Quintiles, Deciles, and Percentiles
We know that the median divides a distribution of data in half. We can define other 
dividing lines that split the distribution into smaller sizes. Quartiles divide the dis-
tribution into quarters, quintiles into fifths, deciles into tenths, and percentiles 
into hundredths. Given a set of observations, the yth percentile is the value at or 
below which y% of observations lie. Percentiles are used frequently, and the other 
measures can be defined with respect to them. For example, the first quartile (Q1) 
divides a distribution such that 25% of the observations lie at or below it; therefore, 
the first quartile is also the 25th percentile. The second quartile (Q2) represents the 
50th percentile, and the third quartile (Q3) represents the 75th percentile (i.e., 75%of 
the observations lie at or below it). The interquartile range (IQR) is the difference 
between the third quartile and the first quartile, or IQR = Q3 − Q1.

8
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When dealing with actual data, we often find that we need to approximate the 
value of a percentile. For example, if we are interested in the value of the 75th percen-
tile, we may find that no observation divides the sample such that exactly 75% of the 
observations lie at or below that value. The following procedure, however, can help us 
determine or estimate a percentile. The procedure involves first locating the position 
of the percentile within the set of observations and then determining (or estimating) 
the value associated with that position.

Let Py be the value at or below which y% of the distribution lies, or the yth per-
centile. (For example, P18 is the point at or below which 18% of the observations 
lie; this implies that 100 − 18 = 82% of the observations are greater than P18.) The 
formula for the position (or location) of a percentile in an array with n entries sorted 
in ascending order is:

L n y
y � �� �1

100
where y is the percentage point at which we are dividing the distribution, and Ly is the 
location (L) of the percentile (Py) in the array sorted in ascending order. The value of 
Ly may or may not be a whole number. In general, as the sample size increases, the 
percentile location calculation becomes more accurate; in small samples it may be 
quite approximate.

To summarize:

■■ When the location, Ly, is a whole number, the location corresponds to an actual 
observation. For example, if we are determining the third quartile (Q3) in a 
sample of size n = 11, then Ly would be L75 = (11 + 1)(75/100) = 9, and the third 
quartile would be P75 = X9, where Xi is defined as the value of the observation 
in the ith (i = L75, so 9th), position of the data sorted in ascending order.

■■ When Ly is not a whole number or integer, Ly lies between the two closest 
integer numbers (one above and one below), and we use linear interpolation 
between those two places to determine Py. Interpolation means estimating an 
unknown value on the basis of two known values that surround it (i.e., lie above 
and below it); the term “linear” refers to a straight- line estimate.

Example 14 illustrates the calculation of various quantiles for the daily return on the 
EAA Equity Index.

EXAMPLE 14   

Percentiles, Quintiles, and Quartiles for the EAA Equity 
Index
Using the daily returns on the fictitious EAA Equity Index over five years and 
ranking them by return, from lowest to highest daily return, we show the return 
bins from 1 (the lowest 5%) to 20 (the highest 5%) as follows:

(7)
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Exhibit 43   EAA Equity Index Daily Returns Grouped by Size of Return

Bin

Cumulative 
Percentage 
of Sample 

Trading Days 
(%)

Daily Return (%) Between*

Number of 
ObservationsLower Bound Upper Bound

1 5 −4.108 −1.416 63
2 10 −1.416 −0.876 63
3 15 −0.876 −0.629 63
4 20 −0.629 −0.432 63
5 25 −0.432 −0.293 63
6 30 −0.293 −0.193 63
7 35 −0.193 −0.124 62
8 40 −0.124 −0.070 63
9 45 −0.070 −0.007 63
10 50 −0.007 0.044 63
11 55 0.044 0.108 63
12 60 0.108 0.173 63
13 65 0.173 0.247 63
14 70 0.247 0.343 62
15 75 0.343 0.460 63
16 80 0.460 0.575 63
17 85 0.575 0.738 63
18 90 0.738 0.991 63
19 95 0.991 1.304 63
20 100 1.304 5.001 63

Note that because of the continuous nature of returns, it is not likely for a 
return to fall on the boundary for any bin other than the minimum (Bin = 1) 
and maximum (Bin = 20).

1 Identify the 10th and 90th percentiles.
2 Identify the first, second, and third quintiles.
3 Identify the first and third quartiles.
4 Identify the median.
5 Calculate the interquartile range.

Solution to 1
The 10th and 90th percentiles correspond to the bins or ranked returns that 
include 10% and 90% of the daily returns, respectively. The 10th percentile 
corresponds to the return of −0.876% (and includes returns of that much and 
lower), and the 90th percentile corresponds to the return of 0.991% (and lower).

Solution to 2
The first quintile corresponds to the lowest 20% of the ranked data, or −0.432% 
(and lower).

The second quintile corresponds to the lowest 40% of the ranked data, or 
−0.070% (and lower).
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The third quintile corresponds to the lowest 60% of the ranked data, or 
0.173% (and lower).

Solution to 3
The first quartile corresponds to the lowest 25% of the ranked data, or −0.293% 
(and lower).

The third quartile corresponds to the lowest 75% of the ranked data, or 
0.460% (and lower).

Solution to 4
The median is the return for which 50% of the data lies on either side, which is 
0.044%, the highest daily return in the 10th bin out of 20.

Solution to 5
The interquartile range is the difference between the third and first quartiles, 
0.460% and −0.293%, or 0.753%.

One way to visualize the dispersion of data across quartiles is to use a diagram, 
such as a box and whisker chart. A box and whisker plot consists of a “box” with 
“whiskers” connected to the box, as shown in Exhibit 44. The “box” represents the 
lower bound of the second quartile and the upper bound of the third quartile, with 
the median or arithmetic average noted as a measure of central tendency of the entire 
distribution. The whiskers are the lines that run from the box and are bounded by the 
“fences,” which represent the lowest and highest values of the distribution.

Exhibit 44   Box and Whisker Plot

Interquartile
Range

Highest Value

×

Upper Boundary for Q3

Median

Arithmetic Average

Lowest Boundary for Q2

Lowest Value

There are several variations for box and whisker displays. For example, for ease 
in detecting potential outliers, the fences of the whiskers may be a function of the 
interquartile range instead of the highest and lowest values like that in Exhibit 44.

In Exhibit  44, visually, the interquartile range is the height of the box and the 
fences are set at extremes. But another form of box and whisker plot typically uses 
1.5 times the interquartile range for the fences. Thus, the upper fence is 1.5 times the 
interquartile range added to the upper bound of Q3, and the lower fence is 1.5 times 
the interquartile range subtracted from the lower bound of Q2. Observations beyond 
the fences (i.e., outliers) may also be displayed.

We can see the role of outliers in such a box and whisker plot using the EAA 
Equity Index daily returns, as shown in Exhibit  45. Referring back to Exhibit  43 
(Example 13), we know:

■■ The maximum and minimum values of the distribution are 5.001 and −4.108, 
respectively, while the median (50th percentile) value is 0.044.
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■■ The interquartile range is 0.753 [= 0.460 − (−0.293)], and when multiplied by 
1.5 and added to the Q3 upper bound of 0.460 gives an upper fence of 1.589 [= 
(1.5 × 0.753) + 0.460].

■■ The lower fence is determined in a similar manner, using the Q2 lower bound, 
to be −1.422 [= −(1.5 × 0.753) + (−0.293)].

As noted, any observation above (below) the upper (lower) fence is deemed to 
be an outlier.

Exhibit 45   Box and Whisker Chart for EAA Equity Index Daily Returns

Daily Return (%)

6

5

4

3

2

1

–1

0

–2

–3

–4

–5

Maximum of 5.001%

(Q3 Upper 
Bound)
0.460%

(Q2 Lower
Bound)

–0.293%

1.589% (Upper Fence)

Median of
0.044%

–1.422%
(Lower Fence)

Minimum of –4.108%

EXAMPLE 15  

Quantiles
Consider the results of an analysis focusing on the market capitalizations of a 
sample of 100 firms:

Bin

Cumulative 
Percentage of 

Sample (%)

Market Capitalization  
(in billions of €) Number of 

ObservationsLower Bound Upper Bound

1 5 0.28 15.45 5
2 10 15.45 21.22 5
3 15 21.22 29.37 5
4 20 29.37 32.57 5
5 25 32.57 34.72 5
6 30 34.72 37.58 5
7 35 37.58 39.90 5
8 40 39.90 41.57 5
9 45 41.57 44.86 5
10 50 44.86 46.88 5
11 55 46.88 49.40 5
12 60 49.40 51.27 5
13 65 51.27 53.58 5
14 70 53.58 56.66 5
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Bin

Cumulative 
Percentage of 

Sample (%)

Market Capitalization  
(in billions of €) Number of 

ObservationsLower Bound Upper Bound

15 75 56.66 58.34 5
16 80 58.34 63.10 5
17 85 63.10 67.06 5
18 90 67.06 73.00 5
19 95 73.00 81.62 5
20 100 81.62 96.85 5

Using this information, answer the following five questions.

1 The tenth percentile corresponds to observations in bins:
A 2.
B 1 and 2.
C 19 and 20.

2 The second quintile corresponds to observations in bins:
A 8
B 5, 6, 7, and 8.
C 6, 7, 8, 9, and 10.

3 The fourth quartile corresponds to observations in bins:
A 17.
B 17, 18, 19, and 20.
C 16, 17, 18, 19, and 20.

4 The median is closest to:
A 44.86.
B 46.88.
C 49.40.

5 The interquartile range is closest to:
A 20.76.
B 23.62.
C 25.52.

Solution to 1
B is correct because the tenth percentile corresponds to the lowest 10% of the 
observations in the sample, which are in bins 1 and 2.

Solution to 2
B is correct because the second quintile corresponds to the second 20% of 
observations. The first 20% consists of bins 1 through 4. The second 20% of 
observations consists of bins 5 through 8.

Solution to 3
C is correct because a quartile consists of 25% of the data, and the last 25% of 
the 20 bins are 16 through 20.

Solution to 4
B is correct because this is the center of the 20 bins. The market capitalization 
of 46.88 is the highest value of the 10th bin and the lowest value of the 11th bin.
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Solution to 5
B is correct because the interquartile range is the difference between the lowest 
value in the second quartile and the highest value in the third quartile. The lowest 
value of the second quartile is 34.72, and the highest value of the third quartile 
is 58.34. Therefore, the interquartile range is 58.34 − 34.72 = 23.62.

8.2 Quantiles in Investment Practice
In this section, we briefly discuss the use of quantiles in investments. Quantiles are 
used in portfolio performance evaluation as well as in investment strategy develop-
ment and research.

Investment analysts use quantiles every day to rank performance—for example, 
the performance of portfolios. The performance of investment managers is often 
characterized in terms of the percentile or quartile in which they fall relative to the 
performance of their peer group of managers. The Morningstar investment fund star 
rankings, for example, associate the number of stars with percentiles of performance 
relative to similar- style investment funds.

Another key use of quantiles is in investment research. For example, analysts often 
refer to the set of companies with returns falling below the 10th percentile cutoff point 
as the bottom return decile. Dividing data into quantiles based on some characteristic 
allows analysts to evaluate the impact of that characteristic on a quantity of interest. 
For instance, empirical finance studies commonly rank companies based on the mar-
ket value of their equity and then sort them into deciles. The first decile contains the 
portfolio of those companies with the smallest market values, and the tenth decile 
contains those companies with the largest market values. Ranking companies by decile 
allows analysts to compare the performance of small companies with large ones.

MEASURES OF DISPERSION

j Calculate and interpret measures of dispersion

Few would disagree with the importance of expected return or mean return in invest-
ments: The mean return tells us where returns, and investment results, are centered. 
To more completely understand an investment, however, we also need to know how 
returns are dispersed around the mean. Dispersion is the variability around the central 
tendency. If mean return addresses reward, then dispersion addresses risk.

In this section, we examine the most common measures of dispersion: range, 
mean absolute deviation, variance, and standard deviation. These are all measures of 
absolute dispersion. Absolute dispersion is the amount of variability present without 
comparison to any reference point or benchmark.

These measures are used throughout investment practice. The variance or standard 
deviation of return is often used as a measure of risk pioneered by Nobel laureate 
Harry Markowitz. Other measures of dispersion, mean absolute deviation and range, 
are also useful in analyzing data.

9.1 The Range
We encountered range earlier when we discussed the construction of frequency dis-
tributions. It is the simplest of all the measures of dispersion.

9
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Definition of Range. The range is the difference between the maximum and 
minimum values in a dataset:

Range = Maximum value − Minimum value.  

As an illustration of range, consider Exhibit 35, our example of annual returns for 
countries’ stock indexes. The range of returns for Year 1 is the difference between 
the returns of Country G’s index and Country A’s index, or 12.7 − (−15.6) = 28.3%. 
The range of returns for Year 3 is the difference between the returns for the County 
D index and the Country B index, or 6.2 − (−1.5) = 7.7%.

An alternative definition of range specifically reports the maximum and minimum 
values. This alternative definition provides more information than does the range as 
defined in Equation 8. In other words, in the above- mentioned case for Year 1, the 
range is reported as “from 12.7% to −15.6%.”

One advantage of the range is ease of computation. A disadvantage is that the 
range uses only two pieces of information from the distribution. It cannot tell us how 
the data are distributed (that is, the shape of the distribution). Because the range is 
the difference between the maximum and minimum returns, it can reflect extremely 
large or small outcomes that may not be representative of the distribution.

9.2 The Mean Absolute Deviation
Measures of dispersion can be computed using all the observations in the distribution 
rather than just the highest and lowest. But how should we measure dispersion? Our 
previous discussion on properties of the arithmetic mean introduced the notion of 
distance or deviation from the mean X Xi �� �  as a fundamental piece of information 
used in statistics. We could compute measures of dispersion as the arithmetic average 
of the deviations around the mean, but we would encounter a problem: The deviations 
around the mean always sum to 0. If we computed the mean of the deviations, the 
result would also equal 0. Therefore, we need to find a way to address the problem of 
negative deviations canceling out positive deviations.

One solution is to examine the absolute deviations around the mean as in the mean 
absolute deviation. This is also known as the average absolute deviation.

Mean Absolute Deviation Formula. The mean absolute deviation (MAD) for a 
sample is:

MAD �

�
�
� X X

n

i
i

n

1

 where X  is the sample mean, n is the number of observations in the 
sample, and the | | indicate the absolute value of what is contained within these 
bars.

In calculating MAD, we ignore the signs of the deviations around the mean. For 
example, if Xi = −11.0 and X  = 4.5, the absolute value of the difference is |−11.0 − 4.5| 
= |−15.5| = 15.5. The mean absolute deviation uses all of the observations in the sample 
and is thus superior to the range as a measure of dispersion. One technical drawback 
of MAD is that it is difficult to manipulate mathematically compared with the next 
measure we will introduce, sample variance. Example  16 illustrates the use of the 
range and the mean absolute deviation in evaluating risk.

(8)

(9)
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EXAMPLE 16   

Mean Absolute Deviation for Selected Countries’ Stock 
Index Returns
Using the country stock index returns in Exhibit 35, calculate the mean absolute 
deviation of the index returns for each year. Note the sample mean returns ( X ) 
are 3.5%, 2.5%, and 2.0% for Years 1, 2, and 3, respectively.

Solution

Absolute Value of Deviation from the Mean 
X Xi −

Year 1 Year 2 Year 3

Country A 19.1 7.9 4.1
Country B 4.3 3.8 3.5
Country C 1.8 1.3 1.5
Country D 5.9 5.6 4.2
Country E 7.5 5.5 1.0
Country F 1.9 2.7 3.0
Country G 9.2 4.2 3.2
Country H 0.0 1.8 1.4
Country I 2.7 5.3 1.2
Country J 4.6 1.6 2.9
Country K 8.0 0.9 0.8
Sum 65.0 40.6 26.8

MAD 5.91 3.69 2.44

For Year 3, for example, the sum of the absolute deviations from the arithmetic 
mean ( X  = 2.0) is 26.8. We divide this by 11, with the resulting MAD of 2.44.

9.3 Sample Variance and Sample Standard Deviation
The mean absolute deviation addressed the issue that the sum of deviations from the 
mean equals zero by taking the absolute value of the deviations. A second approach 
to the treatment of deviations is to square them. The variance and standard deviation, 
which are based on squared deviations, are the two most widely used measures of 
dispersion. Variance is defined as the average of the squared deviations around the 
mean. Standard deviation is the positive square root of the variance. The following 
discussion addresses the calculation and use of variance and standard deviation.

9.3.1 Sample Variance

In investments, we often do not know the mean of a population of interest, usually 
because we cannot practically identify or take measurements from each member of 
the population. We then estimate the population mean using the mean from a sample 
drawn from the population, and we calculate a sample variance or standard deviation.
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Sample Variance Formula. The sample variance, s2, is:

s
X X

n

i
i

n

2

2

1
1

�

�� �
�

�
�

where X  is the sample mean and n is the number of observations in the sample.

Given knowledge of the sample mean, we can use Equation 10 to calculate the sum 
of the squared differences from the mean, taking account of all n items in the sample, 
and then to find the mean squared difference by dividing the sum by n − 1. Whether 
a difference from the mean is positive or negative, squaring that difference results in 
a positive number. Thus, variance takes care of the problem of negative deviations 
from the mean canceling out positive deviations by the operation of squaring those 
deviations.

For the sample variance, by dividing by the sample size minus 1 (or n − 1) rather 
than n, we improve the statistical properties of the sample variance. In statistical terms, 
the sample variance defined in Equation 10 is an unbiased estimator of the population 
variance (a concept covered later in the curriculum on sampling). The quantity n − 1 is 
also known as the number of degrees of freedom in estimating the population variance. 
To estimate the population variance with s2, we must first calculate the sample mean, 
which itself is an estimated parameter. Therefore, once we have computed the sample 
mean, there are only n − 1 independent pieces of information from the sample; that 
is, if you know the sample mean and n − 1 of the observations, you could calculate 
the missing sample observation.

9.3.2 Sample Standard Deviation

Because the variance is measured in squared units, we need a way to return to the 
original units. We can solve this problem by using standard deviation, the square root 
of the variance. Standard deviation is more easily interpreted than the variance because 
standard deviation is expressed in the same unit of measurement as the observations. 
By taking the square root, we return the values to the original unit of measurement. 
Suppose we have a sample with values in euros. Interpreting the standard deviation 
in euros is easier than interpreting the variance in squared euros.

Sample Standard Deviation Formula. The sample standard deviation, s, is:

s
X X

n

i
i

n

�

�� �
�

�
� 2

1
1

where X  is the sample mean and n is the number of observations in the sample.

To calculate the sample standard deviation, we first compute the sample variance. 
We then take the square root of the sample variance. The steps for computing the 
sample variance and the standard deviation are provided in Exhibit 46.

Exhibit 46   Steps to Calculate Sample Standard Deviation and Variance

Step Description Notation

1 Calculate the sample mean X

2 Calculate the deviations from the sample mean X Xi �� �

(10)

(11)

(continued)
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Step Description Notation

3 Calculate each observation’s squared deviation from 
the sample mean X Xi �� �2

4 Sum the squared deviations from the mean
X Xi

i

n
�� �

�
� 2

1

5 Divide the sum of squared deviations from the mean 
by n − 1. This is the variance (s2). X X

n

i
i

n
�� �
�

�
� 2

1
1

6 Take the square root of the sum of the squared devia-
tions divided by n − 1. This is the standard deviation (s). X X

n

i
i

n
�� �
�

�
� 2

1
1

We illustrate the process of calculating the sample variance and standard deviation 
in Example 17 using the returns of the selected country stock indexes presented in 
Exhibit 35.

EXAMPLE 17  

Calculating Sample Variance and Standard Deviation for 
Returns on Selected Country Stock Indexes
Using the sample information on country stock indexes in Exhibit 35, calculate 
the sample variance and standard deviation of the sample of index returns for 
Year 3.

Solution

Index
Sample 

Observation
Deviation from the 

Sample Mean
Squared 

Deviation

Country A 6.1 4.1 16.810
Country B −1.5 −3.5 12.250
Country C 3.5 1.5 2.250
Country D 6.2 4.2 17.640
Country E 3.0 1.0 1.000
Country F −1.0 −3.0 9.000
Country G −1.2 −3.2 10.240
Country H 3.4 1.4 1.960
Country I 3.2 1.2 1.440
Country J −0.9 −2.9 8.410
Country K 1.2 −0.8 0.640
Sum 22.0 0.0 81.640

Sample variance = 81.640/10 = 8.164

Exhibit 46   (Continued)
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Sample standard deviation = 8 164.  = 2.857

In addition to looking at the cross- sectional standard deviation as we did in 
Example 17, we could also calculate the standard deviation of a given country’s returns 
across time (that is, the three years). Consider Country F, which has an arithmetic 
mean return of 3.2%. The sample standard deviation is calculated as:

0 054 0 032 0 052 0 032 0 01 0 032
2

0 000484 0 0

2 2 2. . . . . .

. .
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Because the standard deviation is a measure of dispersion about the arithmetic 
mean, we usually present the arithmetic mean and standard deviation together when 
summarizing data. When we are dealing with data that represent a time series of 
percentage changes, presenting the geometric mean—representing the compound 
rate of growth—is also very helpful.

9.3.3 Dispersion and the Relationship between the Arithmetic and the Geometric Means

We can use the sample standard deviation to help us understand the gap between the 
arithmetic mean and the geometric mean. The relation between the arithmetic 
mean X� �  and geometric mean XG� �  is:

X X s
G � �

2

2
In other words, the larger the variance of the sample, the wider the difference 

between the geometric mean and the arithmetic mean.
Using the data for Country F from Example 8, the geometric mean return is 3.1566%, 

the arithmetic mean return is 3.2%, and the factor s2/2 is 0.001324/2 = 0.0662%:
3.1566% ≈ 3.2% − 0.0662%
3.1566% ≈ 3.1338%.

This relation informs us that the more disperse or volatile the returns, the larger 
the gap between the geometric mean return and the arithmetic mean return.

DOWNSIDE DEVIATION AND COEFFICIENT OF 
VARIATION

k Calculate and interpret target downside deviation

An asset’s variance or standard deviation of returns is often interpreted as a measure 
of the asset’s risk. Variance and standard deviation of returns take account of returns 
above and below the mean, or upside and downside risks, respectively. However, 
investors are typically concerned only with downside risk—for example, returns 
below the mean or below some specified minimum target return. As a result, analysts 
have developed measures of downside risk.

10
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In practice, we may be concerned with values of return (or another variable) below 
some level other than the mean. For example, if our return objective is 6.0% annually 
(our minimum acceptable return), then we may be concerned particularly with returns 
below 6.0% a year. The 6.0% is the target. The target downside deviation, also referred 
to as the target semideviation, is a measure of dispersion of the observations (here, 
returns) below the target. To calculate a sample target semideviation, we first specify 
the target. After identifying observations below the target, we find the sum of the 
squared negative deviations from the target, divide that sum by the total number of 
observations in the sample minus 1, and, finally, take the square root.

Sample Target Semideviation Formula. The target semideviation, sTarget, is:

sTarget = 
X B

n
i

X B

n

i

�� �
��

�
2

1for all
,

where B is the target and n is the total number of sample observations. We illustrate 
this in Example 18.

EXAMPLE 18  

Calculating Target Downside Deviation
Suppose the monthly returns on a portfolio are as shown:

Monthly Portfolio Returns

Month Return (%)

January 5
February 3
March −1
April −4
May 4
June 2
July 0
August 4
September 3
October 0
November 6
December 5

1 Calculate the target downside deviation when the target return is 3%.
2 If the target return were 4%, would your answer be different from that for 

question 1? Without using calculations, explain how would it be different?

(12)
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Solution to 1

Month Observation

Deviation 
from the 3% 

Target

Deviations 
below the 

Target

Squared 
Deviations 
below the 

Target

January 5 2 — —
February 3 0 — —
March −1 −4 −4 16
April −4 −7 −7 49
May 4 1 — —
June 2 −1 −1 1
July 0 −3 −3 9
August 4 1 — —
September 3 0 — —
October 0 −3 −3 9
November 6 3 — —
December 5 2 — —

Sum 84

Target semideviation = 84
11

 = 2.7634%

Solution to 2
If the target return is higher, then the existing deviations would be larger and 
there would be several more values in the deviations and squared deviations 
below the target; so, the target semideviation would be larger.

How does the target downside deviation relate to the sample standard deviation? 
We illustrate the differences between the target downside deviation and the standard 
deviation in Example 19, using the data in Example 18.

EXAMPLE 19  

Comparing the Target Downside Deviation with the 
Standard Deviation

1 Given the data in Example 18, calculate the sample standard deviation.
2 Given the data in Example 18, calculate the target downside deviation if 

the target is 2%.
3 Compare the standard deviation, the target downside deviation if the 

target is 2%, and the target downside deviation if the target is 3%.

Solution to 1

Month Observation
Deviation from 

the mean
Squared 

deviation

January 5 2.75 7.5625
February 3 0.75 0.5625

(continued)

© CFA Institute. For candidate use only. Not for distribution.



Reading 2 ■ Organizing, Visualizing, and Describing Data134

Month Observation
Deviation from 

the mean
Squared 

deviation

March −1 −3.25 10.5625
April −4 −6.25 39.0625
May 4 1.75 3.0625
June 2 −0.25 0.0625
July 0 −2.25 5.0625
August 4 1.75 3.0625
September 3 0.75 0.5625
October 0 −2.25 5.0625
November 6 3.75 14.0625
December 5 2.75 7.5625

Sum 27 96.2500

The sample standard deviation is 96 2500
11
.  = 2.958%.

Solution to 2

Month Observation

Deviation 
from the 2% 

Target

Deviations 
below the 

Target

Squared 
Deviations 
below the 

Target

January 5 3 — —
February 3 1 — —
March −1 −3 −3 9
April −4 −6 −6 36
May 4 2 — —
June 2 0 — —
July 0 −2 −2 4
August 4 2 — —
September 3 1 — —
October 0 −2 −2 4
November 6 4 — —
December 5 3 — —

Sum 53

The target semideviation with 2% target = 53
11

 = 2.195%.

Solution to 3
The standard deviation is based on the deviation from the mean, which is 2.25%. 
The standard deviation includes all deviations from the mean, not just those 
below it. This results in a sample standard deviation of 2.958%.

Considering just the four observations below the 2% target, the target 
semideviation is 2.195%. It is less than the sample standard deviation since 
target semideviation captures only the downside risk (i.e., deviations below the 
target). Considering target semideviation with a 3% target, there are now five 
observations below 3%, so the target semideviation is higher, at 2.763%.
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10.1 Coefficient of Variation
We noted earlier that the standard deviation is more easily interpreted than variance 
because standard deviation uses the same units of measurement as the observations. 
We may sometimes find it difficult to interpret what standard deviation means in terms 
of the relative degree of variability of different sets of data, however, either because 
the datasets have markedly different means or because the datasets have different 
units of measurement. In this section, we explain a measure of relative dispersion, 
the coefficient of variation that can be useful in such situations. Relative dispersion 
is the amount of dispersion relative to a reference value or benchmark.

The coefficient of variation is helpful in such situations as that just described (i.e., 
datasets with markedly different means or different units of measurement).

Coefficient of Variation Formula. The coefficient of variation, CV, is the ratio 
of the standard deviation of a set of observations to their mean value:

CV = s X

where s is the sample standard deviation and X  is the sample mean.

When the observations are returns, for example, the coefficient of variation mea-
sures the amount of risk (standard deviation) per unit of reward (mean return). An 
issue that may arise, especially when dealing with returns, is that if X  is negative, 
the statistic is meaningless.

The CV may be stated as a multiple (e.g., 2 times) or as a percentage (e.g., 200%). 
Expressing the magnitude of variation among observations relative to their average 
size, the coefficient of variation permits direct comparisons of dispersion across 
different datasets. Reflecting the correction for scale, the coefficient of variation is a 
scale- free measure (that is, it has no units of measurement).

We illustrate the usefulness of coefficient of variation for comparing datasets with 
markedly different standard deviations using two hypothetical samples of companies 
in Example 20.

EXAMPLE 20  

Coefficient of Variation of Returns on Assets
Suppose an analyst collects the return on assets (in percentage terms) for ten 
companies for each of two industries:

Company Industry A Industry B

1 −5 −10
2 −3 −9
3 −1 −7
4 2 −3
5 4 1
6 6 3
7 7 5
8 9 18
9 10 20
10 11 22

These data can be represented graphically as the following:

(13)
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–5 –3 –1 2 4 6 7 9 10 11

–10 –9 –7 –3 1 3 5 18 20 22

Industry A

Industry B

1 Calculate the average return on assets (ROA) for each industry.
2 Calculate the standard deviation of ROA for each industry.
3 Calculate the coefficient of variation of ROA for each industry.

Solution to 1
The arithmetic mean for both industries is the sum divided by 10, or 40/10 = 4%.

Solution to 2
The standard deviation using Equation 11 for Industry A is 5.60, and for Industry 
B the standard deviation is 12.12.

Solution to 3

The coefficient of variation for Industry A = 5.60/4 = 1.40.
The coefficient of variation for Industry B = 12.12/4 = 3.03.

Though the two industries have the same arithmetic mean ROA, the dispersion 
is different—with Industry B’s returns on assets being much more disperse than 
those of Industry A. The coefficients of variation for these two industries reflects 
this, with Industry B having a larger coefficient of variation. The interpretation 
is that the risk per unit of mean return is more than two times (2.16 = 3.03/1.40) 
greater for Industry B compared to Industry A.

THE SHAPE OF THE DISTRIBUTIONS

 l. Interpret skewness

Mean and variance may not adequately describe an investment’s distribution of returns. 
In calculations of variance, for example, the deviations around the mean are squared, 
so we do not know whether large deviations are likely to be positive or negative. 
We need to go beyond measures of central tendency and dispersion to reveal other 
important characteristics of the distribution. One important characteristic of interest 
to analysts is the degree of symmetry in return distributions.

If a return distribution is symmetrical about its mean, each side of the distribution 
is a mirror image of the other. Thus, equal loss and gain intervals exhibit the same 
frequencies. If the mean is zero, for example, then losses from −5% to −3% occur with 
about the same frequency as gains from 3% to 5%.

11
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One of the most important distributions is the normal distribution, depicted 
in Exhibit 47. This symmetrical, bell- shaped distribution plays a central role in the 
mean–variance model of portfolio selection; it is also used extensively in financial risk 
management. The normal distribution has the following characteristics:

■■ Its mean, median, and mode are equal.
■■ It is completely described by two parameters—its mean and variance (or stan-

dard deviation).

But with any distribution other than a normal distribution, more information than 
the mean and variance is needed to characterize its shape.

Exhibit 47   The Normal Distribution

Density of Probability

–5 5–1 0–4 –3 –2 2 3 41

Standard Deviation

A distribution that is not symmetrical is skewed. A return distribution with positive 
skew has frequent small losses and a few extreme gains. A return distribution with 
negative skew has frequent small gains and a few extreme losses. Exhibit 48 shows 
continuous positively and negatively skewed distributions. The continuous positively 
skewed distribution shown has a long tail on its right side; the continuous negatively 
skewed distribution shown has a long tail on its left side.

For a continuous positively skewed unimodal distribution, the mode is less than the 
median, which is less than the mean. For the continuous negatively skewed unimodal 
distribution, the mean is less than the median, which is less than the mode. For a given 
expected return and standard deviation, investors should be attracted by a positive 
skew because the mean return lies above the median. Relative to the mean return, 
positive skew amounts to limited, though frequent, downside returns compared with 
somewhat unlimited, but less frequent, upside returns.
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Exhibit 48   Properties of Skewed Distributions

Density of Probability

A. Positively Skewed

Mode Median Mean

Density of Probability

B. Negatively Skewed

ModeMedianMean

Skewness is the name given to a statistical measure of skew. (The word “skewness” is 
also sometimes used interchangeably for “skew.”) Like variance, skewness is computed 
using each observation’s deviation from its mean. Skewness (sometimes referred 
to as relative skewness) is computed as the average cubed deviation from the mean 
standardized by dividing by the standard deviation cubed to make the measure free 
of scale. A symmetric distribution has skewness of 0, a positively skewed distribution 
has positive skewness, and a negatively skewed distribution has negative skewness, 
as given by this measure.

We can illustrate the principle behind the measure by focusing on the numera-
tor. Cubing, unlike squaring, preserves the sign of the deviations from the mean. If 
a distribution is positively skewed with a mean greater than its median, then more 
than half of the deviations from the mean are negative and less than half are positive. 
However, for the sum of the cubed deviations to be positive, the losses must be small 
and likely and the gains less likely but more extreme. Therefore, if skewness is positive, 
the average magnitude of positive deviations is larger than the average magnitude of 
negative deviations.

The approximation for computing sample skewness when n is large (100 or 
more) is:

Skewness � �
�
�
�
�
�

�� �
�
�

1
3

1
3n
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A simple example illustrates that a symmetrical distribution has a skewness mea-
sure equal to 0. Suppose we have the following data: 1, 2, 3, 4, 5, 6, 7, 8, and 9. The 
mean outcome is 5, and the deviations are −4, −3, −2, −1, 0, 1, 2, 3, and 4. Cubing the 
deviations yields −64, −27, −8, −1, 0, 1, 8, 27, and 64, with a sum of 0. The numerator 
of skewness (and so skewness itself ) is thus equal to 0, supporting our claim.

As you will learn as the CFA Program curriculum unfolds, different investment 
strategies may tend to introduce different types and amounts of skewness into returns.

11.1 The Shape of the Distributions: Kurtosis

m Interpret kurtosis

In the previous section, we discussed how to determine whether a return distribution 
deviates from a normal distribution because of skewness. Another way in which a 
return distribution might differ from a normal distribution is its relative tendency 
to generate large deviations from the mean. Most investors would perceive a greater 
chance of extremely large deviations from the mean as increasing risk.

Kurtosis is a measure of the combined weight of the tails of a distribution relative 
to the rest of the distribution—that is, the proportion of the total probability that is 
outside of, say, 2.5 standard deviations of the mean. A distribution that has fatter tails 
than the normal distribution is referred to as leptokurtic or fat- tailed; a distribution 
that has thinner tails than the normal distribution is referred to as being platykurtic or 
thin- tailed; and a distribution similar to the normal distribution as concerns relative 
weight in the tails is called mesokurtic. A fat- tailed (thin- tailed) distribution tends 
to generate more- frequent (less- frequent) extremely large deviations from the mean 
than the normal distribution.

Exhibit 49 illustrates a fat- tailed distribution. It has fatter tails than the normal 
distribution. By construction, the fat- tailed and normal distributions in this exhibit 
have the same mean, standard deviation, and skewness. Note that this fat- tailed dis-
tribution is more likely than the normal distribution to generate observations in the 
tail regions defined by the intersection of graphs near a standard deviation of about 
±2.5. This fat- tailed distribution is also more likely to generate observations that are 
near the mean, defined here as the region ±1 standard deviation around the mean. 
In compensation, to have probabilities sum to 1, this distribution generates fewer 
observations in the regions between the central region and the two tail regions.

Exhibit 49   Fat- Tailed Distribution Compared to the Normal Distribution

Density of Probability

0.6
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0.1

0

Normal Distribution Fat-Tailed Distribution
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Standard Deviation
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The calculation for kurtosis involves finding the average of deviations from the 
mean raised to the fourth power and then standardizing that average by dividing by 
the standard deviation raised to the fourth power. A normal distribution has kurtosis 
of 3.0, so a fat- tailed distribution has a kurtosis of above 3 and a thin- tailed distribu-
tion of below 3.0.

Excess kurtosis is the kurtosis relative to the normal distribution. For a large sam-
ple size (n = 100 or more), sample excess kurtosis (KE) is approximately as follows:
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As with skewness, this measure is free of scale. Many statistical packages report 
estimates of sample excess kurtosis, labeling this as simply “kurtosis.”

Excess kurtosis thus characterizes kurtosis relative to the normal distribution. A 
normal distribution has excess kurtosis equal to 0. A fat- tailed distribution has excess 
kurtosis greater than 0, and a thin- tailed distribution has excess kurtosis less than 0. A 
return distribution with positive excess kurtosis—a fat- tailed return distribution—has 
more frequent extremely large deviations from the mean than a normal distribution.

Summarizing:

If kurtosis is …
then excess 

kurtosis is …
Therefore, the 

distribution is …

And we refer to 
the distribution as 

being …

above 3.0 above 0. fatter- tailed than the 
normal distribution.

fat- tailed 
(leptokurtic).

equal to 3.0 equal to 0. similar in tails to the 
normal distribution.

mesokurtic.

less than 3.0 less than 0. thinner- tailed than the 
normal distribution.

thin- tailed 
(platykurtic).

Most equity return series have been found to be fat- tailed. If a return distribution 
is fat- tailed and we use statistical models that do not account for the distribution, 
then we will underestimate the likelihood of very bad or very good outcomes. Using 
the data on the daily returns of the fictitious EAA Equity Index, we see the skewness 
and kurtosis of these returns in Exhibit 50.

Exhibit 50   Skewness and Kurtosis of EAA Equity Index Daily Returns

Daily Return (%)

Arithmetic mean 0.0347
Standard deviation 0.8341

Measure of Symmetry
Skewness −0.4260
Excess kurtosis 3.7962

We can see this graphically, comparing the distribution of the daily returns with 
a normal distribution with the same mean and standard deviation:

© CFA Institute. For candidate use only. Not for distribution.



The Shape of the Distributions 141

Number of Observations

Normal Distribution

–5 5–1 0–4 –3 –2 2 3 41

Standard Deviation

EAA Daily Returns

Using both the statistics and the graph, we see the following:

■■ The distribution is negatively skewed, as indicated by the negative calcu-
lated skewness of −0.4260 and the influence of observations below the 
mean of 0.0347%.

■■ The highest frequency of returns occurs within the −0.5 to 0.0 standard 
deviations from the mean (i.e., negatively skewed).

■■ The distribution is fat- tailed, as indicated by the positive excess kurtosis of 
3.7962. We can see fat tails, a concentration of returns around the mean, 
and fewer observations in the regions between the central region and the 
two- tail regions.

EXAMPLE 21  

Interpreting Skewness and Kurtosis
Consider the daily trading volume for a stock for one year, as shown in the graph 
below. In addition to the count of observations within each bin or interval, the 
number of observations anticipated based on a normal distribution (given the 
sample arithmetic average and standard deviation) is provided in the chart as 
well. The average trading volume per day for this stock in this year is 8.6 million 
shares, and the standard deviation is 4.9 million shares.

Exhibit 50   (Continued)
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Histogram of Daily Trading Volume for a Stock for One Year
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1 Describe whether or not this distribution is skewed. If so, what could 
account for this situation?

2 Describe whether or not this distribution displays kurtosis. How would 
you make this determination?

Solution to 1
The distribution appears to be skewed to the right, or positively skewed. This is 
likely due to: (1) no possible negative trading volume on a given trading day, so the 
distribution is truncated at zero; and (2) greater- than- typical trading occurring 
relatively infrequently, such as when there are company- specific announcements.

The actual skewness for this distribution is 2.1090, which supports this 
interpretation.

Solution to 2
The distribution appears to have excess kurtosis, with a right- side fat tail and 
with maximum shares traded in the 4.6 to 6.1 million range, exceeding what 
is expected if the distribution was normally distributed. There are also fewer 
observations than expected between the central region and the tail.

The actual excess kurtosis for this distribution is 5.2151, which supports 
this interpretation.

CORRELATION BETWEEN TWO VARIABLES

n Interpret correlation between two variables

12
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Now that we have some understanding of sample variance and standard deviation, we 
can more formally consider the concept of correlation between two random variables 
that we previously explored visually in the scatter plots in Section 6. Correlation is a 
measure of the linear relationship between two random variables.

The first step is to consider how two variables vary together, their covariance.

Definition of Sample Covariance. The sample covariance (sXY) is a measure 
of how two variables in a sample move together:

s
X X Y Y

nXY

i i
i

n

�
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�
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�

1
1

Equation 14 indicates that the sample covariance is the average value of the product 
of the deviations of observations on two random variables (Xi and Yi) from their sample 
means. If the random variables are returns, the units would be returns squared. Also, 
note the use of n − 1 in the denominator, which ensures that the sample covariance 
is an unbiased estimate of population covariance.

Stated simply, covariance is a measure of the joint variability of two random vari-
ables. If the random variables vary in the same direction—for example, X tends to be 
above its mean when Y is above its mean, and X tends to be below its mean when Y is 
below its mean—then their covariance is positive. If the variables vary in the opposite 
direction relative to their respective means, then their covariance is negative.

By itself, the size of the covariance measure is difficult to interpret as it is not 
normalized and so depends on the magnitude of the variables. This brings us to the 
normalized version of covariance, which is the correlation coefficient.

Definition of Sample Correlation Coefficient. The sample correlation 
coefficient is a standardized measure of how two variables in a sample move 
together. The sample correlation coefficient (rXY) is the ratio of the sample cova-
riance to the product of the two variables’ standard deviations:

r s
s sXY

XY

X Y
=

Importantly, the correlation coefficient expresses the strength of the linear rela-
tionship between the two random variables.

12.1 Properties of Correlation
We now discuss the correlation coefficient, or simply correlation, and its properties 
in more detail, as follows:

1 Correlation ranges from −1 and +1 for two random variables, X and Y:

−1 ≤ rXY ≤ +1.

2 A correlation of 0 (uncorrelated variables) indicates an absence of any linear 
(that is, straight- line) relationship between the variables.

3 A positive correlation close to +1 indicates a strong positive linear relationship. 
A correlation of 1 indicates a perfect linear relationship.

4 A negative correlation close to −1 indicates a strong negative (that is, inverse) 
linear relationship. A correlation of −1 indicates a perfect inverse linear 
relationship.

(14)

(15)
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We will make use of scatter plots, similar to those used previously in our discussion 
of data visualization, to illustrate correlation. In contrast to the correlation coefficient, 
which expresses the relationship between two data series using a single number, a 
scatter plot depicts the relationship graphically. Therefore, scatter plots are a very 
useful tool for the sensible interpretation of a correlation coefficient.

Exhibit  51 shows examples of scatter plots. Panel A shows the scatter plot of 
two variables with a correlation of +1. Note that all the points on the scatter plot in 
Panel A lie on a straight line with a positive slope. Whenever variable X increases by 
one unit, variable Y increases by two units. Because all of the points in the graph lie 
on a straight line, an increase of one unit in X is associated with exactly a two- unit 
increase in Y, regardless of the level of X. Even if the slope of the line were different 
(but positive), the correlation between the two variables would still be +1 as long as 
all the points lie on that straight line. Panel B shows a scatter plot for two variables 
with a correlation coefficient of −1. Once again, the plotted observations all fall on a 
straight line. In this graph, however, the line has a negative slope. As X increases by 
one unit, Y decreases by two units, regardless of the initial value of X.

Exhibit 51   Scatter Plots Showing Various Degrees of Correlation
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Panel C shows a scatter plot of two variables with a correlation of 0; they have no 
linear relation. This graph shows that the value of variable X tells us nothing about 
the value of variable Y. Panel D shows a scatter plot of two variables that have a 

© CFA Institute. For candidate use only. Not for distribution.



Correlation between Two Variables 145

non- linear relationship. Because the correlation coefficient is a measure of the linear 
association between two variables, it would not be appropriate to use the correlation 
coefficient in this case.

Example 22 is meant to reinforce your understanding of how to interpret covari-
ance and correlation.

EXAMPLE 22  

Interpreting the Correlation Coefficient
Consider the statistics for the returns over twelve months for three funds, A, 
B, and C, shown in Exhibit 52.

Exhibit 52  

Fund A Fund B Fund C

Arithmetic average 2.9333 3.2250 2.6250
Standard deviation 2.4945 2.4091 3.6668

The covariances are represented in the upper- triangle (shaded area) of the matrix 
shown in Exhibit 53.

Exhibit 53  

Fund A Fund B Fund C

Fund A 6.2224 5.7318 −3.6682

Fund B 5.8039 −2.3125

Fund C 13.4457

The covariance of Fund A and Fund B returns, for example, is 5.7318.
Why show just the upper- triangle of this matrix? Because the covariance of 

Fund A and Fund B returns is the same as the covariance of Fund B and Fund 
A returns.

The diagonal of the matrix in Exhibit 53 is the variance of each fund’s return. 
For example, the variance of Fund A returns is 6.2224, but the covariance of 
Fund A and Fund B returns is 5.7138.

The correlations among the funds’ returns are given in Exhibit 54, where 
the correlations are reported in the upper- triangle (shaded area) of the matrix. 
Note that the correlation of a fund’s returns with itself is +1, so the diagonal in 
the correlation matrix consists of 1.000.
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Exhibit 54  

Fund A Fund B Fund C

Fund A 1.0000 0.9538 −0.4010

Fund B 1.0000 −0.2618

Fund C 1.0000

1 Interpret the correlation between Fund A’s returns and Fund B’s returns.
2 Interpret the correlation between Fund A’s returns and Fund C’s returns.
3 Describe the relationship of the covariance of these returns and the cor-

relation of returns.

Solutions

1 The correlation of Fund A and Fund B returns is 0.9538, which is pos-
itive and close to 1.0. This means that when returns of Fund A tend to 
be above their mean, Fund B’s returns also tend to be above their mean. 
Graphically, we would observe a positive, but not perfect, linear relation-
ship between the returns for the two funds.

2 The correlation of Fund A’s returns and Fund C’s returns is −0.4010, 
which indicates that when Fund A’s returns are above their mean, Fund B’s 
returns tend to be below their mean. This implies a negative slope when 
graphing the returns of these two funds, but it would not be a perfect 
inverse relationship.

3 There are two negative correlations: Fund A returns with Fund C returns, 
and Fund B returns with Fund C returns. What determines the sign of the 
correlation is the sign of the covariance, which in each of these cases is 
negative. When the covariance between fund returns is positive, such as 
between Fund A and Fund B returns, the correlation is positive. This fol-
lows from the fact that the correlation coefficient is the ratio of the covari-
ance of the two funds’ returns to the product of their standard deviations.

12.2 Limitations of Correlation Analysis
Exhibit 51 illustrates that correlation measures the linear association between two 
variables, but it may not always be reliable. Two variables can have a strong nonlinear 
relation and still have a very low correlation. For example, the relation Y = (X − 4)2 is a 
nonlinear relation contrasted to the linear relation Y = 2X − 4. The nonlinear relation 
between variables X and Y is shown in Panel D. Below a level of 4 for X, Y increases 
with decreasing values of X. When X is 4 or greater, however, Y increases whenever X 
increases. Even though these two variables are perfectly associated, there is no linear 
association between them (hence, no meaningful correlation).

Correlation may also be an unreliable measure when outliers are present in one 
or both of the variables. As we have seen, outliers are small numbers of observations 
at either extreme (small or large) of a sample. The correlation may be quite sensitive 
to outliers. In such a situation, we should consider whether it makes sense to exclude 
those outlier observations and whether they are noise or news. As a general rule, we 
must determine whether a computed sample correlation changes greatly by removing 
outliers. We must also use judgment to determine whether those outliers contain 
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information about the two variables’ relationship (and should thus be included in the 
correlation analysis) or contain no information (and should thus be excluded). If they 
are to be excluded from the correlation analysis, as we have seen previously, outlier 
observations can be handled by trimming or winsorizing the dataset.

Importantly, keep in mind that correlation does not imply causation. Even if two 
variables are highly correlated, one does not necessarily cause the other in the sense 
that certain values of one variable bring about the occurrence of certain values of 
the other.

Moreover, with visualizations too, including scatter plots, we must be on guard 
against unconsciously making judgments about causal relationships that may or may 
not be supported by the data.

The term spurious correlation has been used to refer to: 1) correlation between 
two variables that reflects chance relationships in a particular dataset; 2) correlation 
induced by a calculation that mixes each of two variables with a third variable; and 
3) correlation between two variables arising not from a direct relation between them 
but from their relation to a third variable.

As an example of the chance relationship, consider the monthly US retail sales of 
beer, wine, and liquor and the atmospheric carbon dioxide levels from 2000–2018. 
The correlation is 0.824, indicating that there is a positive relation between the two. 
However, there is no reason to suspect that the levels of atmospheric carbon dioxide 
are related to the retail sales of beer, wine, and liquor.

As an example of the second kind of spurious correlation, two variables that are 
uncorrelated may be correlated if divided by a third variable. For example, consider a 
cross- sectional sample of companies’ dividends and total assets. While there may be 
a low correlation between these two variables, dividing each by market capitalization 
may increase the correlation.

As an example of the third kind of spurious correlation, height may be positively 
correlated with the extent of a person’s vocabulary, but the underlying relationships 
are between age and height and between age and vocabulary.

Investment professionals must be cautious in basing investment strategies on high 
correlations. Spurious correlations may suggest investment strategies that appear 
profitable but actually would not be, if implemented.

A further issue is that correlation does not tell the whole story about the data. 
Consider Anscombe’s Quartet, discussed in Exhibit 55, where very dissimilar graphs 
can be developed with variables that have the same mean, same standard deviation, 
and same correlation.

Exhibit 55   Anscombe’s Quartet

Francis Anscombe, a British statistician, developed datasets that illustrate why 
just looking at summary statistics (that is, mean, standard deviation, and cor-
relation) does not fully describe the data. He created four datasets (designated 
I, II, III, and IV), each with two variables, X and Y, such that:

■■ The Xs in each dataset have the same mean and standard deviation, 9.00 
and 3.32, respectively.

■■ The Ys in each dataset have the same mean and standard deviation, 7.50 
and 2.03, respectively.

■■ The Xs and Ys in each dataset have the same correlation of 0.82.
(continued)
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I II III IV

Observation X Y X Y X Y X Y

1 10 8.04 10 9.14 10 7.46 8 6.6
2 8 6.95 8 8.14 8 6.77 8 5.8
3 13 7.58 13 8.74 13 12.74 8 7.7
4 9 8.81 9 8.77 9 7.11 8 8.8
5 11 8.33 11 9.26 11 7.81 8 8.5
6 14 9.96 14 8.1 14 8.84 8 7
7 6 7.24 6 6.13 6 6.08 8 5.3
8 4 4.26 4 3.1 4 5.39 19 13
9 12 10.8 12 9.13 12 8.15 8 5.6
10 7 4.82 7 7.26 7 6.42 8 7.9
11 5 5.68 5 4.74 5 5.73 8 6.9

N 11 11 11 11 11 11 11 11
Mean 9.00 7.50 9.00 7.50 9.00 7.50 9.00 7.50
Standard 
deviation 3.32 2.03 3.32 2.03 3.32 2.03 3.32 2.03
Correlation 0.82 0.82 0.82 0.82

While the X variable has the same values for I, II, and III in the quartet of 
datasets, the Y variables are quite different, creating different relationships. 
The four datasets are:

I An approximate linear relationship between X and Y.
II A curvilinear relationship between X and Y.
III A linear relationship except for one outlier.
IV A constant X with the exception of one outlier.

Depicting the quartet visually,

Exhibit 55   (Continued)
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tom line? Knowing the means and standard deviations of the two variables, as 
well as the correlation between them, does not tell the entire story.

Source: Francis John Anscombe, “Graphs in Statistical Analysis,” The American Statistician 27 
(February 1973): 17–21.

SUMMARY
In this reading, we have presented tools and techniques for organizing, visualizing, 
and describing data that permit us to convert raw data into useful information for 
investment analysis.

■■ Data can be defined as a collection of numbers, characters, words, and text—as 
well as images, audio, and video—in a raw or organized format to represent 
facts or information.

■■ From a statistical perspective, data can be classified as numerical data and 
categorical data. Numerical data (also called quantitative data) are values that 
represent measured or counted quantities as a number. Categorical data (also 
called qualitative data) are values that describe a quality or characteristic of a 
group of observations and usually take only a limited number of values that are 
mutually exclusive.

Exhibit 55   (Continued)
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■■ Numerical data can be further split into two types: continuous data and discrete 
data. Continuous data can be measured and can take on any numerical value in 
a specified range of values. Discrete data are numerical values that result from a 
counting process and therefore are limited to a finite number of values.

■■ Categorical data can be further classified into two types: nominal data and 
ordinal data. Nominal data are categorical values that are not amenable to being 
organized in a logical order, while ordinal data are categorical values that can be 
logically ordered or ranked.

■■ Based on how they are collected, data can be categorized into three types: 
cross- sectional, time series, and panel. Time- series data are a sequence of 
observations for a single observational unit on a specific variable collected 
over time and at discrete and typically equally spaced intervals of time. Cross- 
sectional data are a list of the observations of a specific variable from multiple 
observational units at a given point in time. Panel data are a mix of time- series 
and cross- sectional data that consists of observations through time on one or 
more variables for multiple observational units.

■■ Based on whether or not data are in a highly organized form, they can be classi-
fied into structured and unstructured types. Structured data are highly orga-
nized in a pre- defined manner, usually with repeating patterns. Unstructured 
data do not follow any conventionally organized forms; they are typically alter-
native data as they are usually collected from unconventional sources.

■■ Raw data are typically organized into either a one- dimensional array or a two- 
dimensional rectangular array (also called a data table) for quantitative analysis.

■■ A frequency distribution is a tabular display of data constructed either by 
counting the observations of a variable by distinct values or groups or by tal-
lying the values of a numerical variable into a set of numerically ordered bins. 
Frequency distributions permit us to evaluate how data are distributed.

■■ The relative frequency of observations in a bin (interval or bucket) is the num-
ber of observations in the bin divided by the total number of observations. The 
cumulative relative frequency cumulates (adds up) the relative frequencies as 
we move from the first bin to the last, thus giving the fraction of the observa-
tions that are less than the upper limit of each bin.

■■ A contingency table is a tabular format that displays the frequency distributions 
of two or more categorical variables simultaneously. One application of contin-
gency tables is for evaluating the performance of a classification model (using a 
confusion matrix). Another application of contingency tables is to investigate a 
potential association between two categorical variables by performing a chi- 
square test of independence.

■■ Visualization is the presentation of data in a pictorial or graphical format for 
the purpose of increasing understanding and for gaining insights into the data.

■■ A histogram is a bar chart of data that have been grouped into a frequency 
distribution. A frequency polygon is a graph of frequency distributions obtained 
by drawing straight lines joining successive midpoints of bars representing the 
class frequencies.

■■ A bar chart is used to plot the frequency distribution of categorical data, with 
each bar representing a distinct category and the bar’s height (or length) pro-
portional to the frequency of the corresponding category. Grouped bar charts 
or stacked bar charts can present the frequency distribution of multiple cate-
gorical variables simultaneously.
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■■ A tree- map is a graphical tool to display categorical data. It consists of a set of 
colored rectangles to represent distinct groups, and the area of each rectangle is 
proportional to the value of the corresponding group. Additional dimensions of 
categorical data can be displayed by nested rectangles.

■■ A word cloud is a visual device for representing textual data, with the size of 
each distinct word being proportional to the frequency with which it appears in 
the given text.

■■ A line chart is a type of graph used to visualize ordered observations and often 
to display the change of data series over time. A bubble line chart is a special 
type of line chart that uses varying- sized bubbles as data points to represent an 
additional dimension of data.

■■ A scatter plot is a type of graph for visualizing the joint variation in two numer-
ical variables. It is constructed by drawing dots to indicate the values of the two 
variables plotted against the corresponding axes. A scatter plot matrix organizes 
scatter plots between pairs of variables into a matrix format to inspect all pair-
wise relationships between more than two variables in one combined visual.

■■ A heat map is a type of graphic that organizes and summarizes data in a tabular 
format and represents it using a color spectrum. It is often used in displaying 
frequency distributions or visualizing the degree of correlation among different 
variables.

■■ The key consideration when selecting among chart types is the intended pur-
pose of visualizing data (i.e., whether it is for exploring/presenting distributions 
or relationships or for making comparisons).

■■ A population is defined as all members of a specified group. A sample is a sub-
set of a population.

■■ A parameter is any descriptive measure of a population. A sample statistic (sta-
tistic, for short) is a quantity computed from or used to describe a sample.

■■ Sample statistics—such as measures of central tendency, measures of disper-
sion, skewness, and kurtosis—help with investment analysis, particularly in 
making probabilistic statements about returns.

■■ Measures of central tendency specify where data are centered and include the 
mean, median, and mode (i.e., the most frequently occurring value).

■■ The arithmetic mean is the sum of the observations divided by the number of 
observations. It is the most frequently used measure of central tendency.

■■ The median is the value of the middle item (or the mean of the values of the two 
middle items) when the items in a set are sorted into ascending or descending 
order. The median is not influenced by extreme values and is most useful in the 
case of skewed distributions.

■■ The mode is the most frequently observed value and is the only measure of 
central tendency that can be used with nominal data. A distribution may be 
unimodal (one mode), bimodal (two modes), trimodal (three modes), or have 
even more modes.

■■ A portfolio’s return is a weighted mean return computed from the returns on 
the individual assets, where the weight applied to each asset’s return is the frac-
tion of the portfolio invested in that asset.

■■ The geometric mean, XG , of a set of observations X1, X2, …, Xn, 
is X X X X XG nn= 1 2 3 , with Xi ≥ 0 for i = 1, 2, …, n. The geometric mean is 
especially important in reporting compound growth rates for time- series data. 
The geometric mean will always be less than an arithmetic mean whenever 
there is variance in the observations.
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■■ The harmonic mean, X H , is a type of weighted mean in which an observation’s 
weight is inversely proportional to its magnitude.

■■ Quantiles—such as the median, quartiles, quintiles, deciles, and percentiles—
are location parameters that divide a distribution into halves, quarters, fifths, 
tenths, and hundredths, respectively.

■■ A box and whiskers plot illustrates the interquartile range (the “box”) as well as 
a range outside of the box that is based on the interquartile range, indicated by 
the “whiskers.”

■■ Dispersion measures—such as the range, mean absolute deviation (MAD), 
variance, standard deviation, target downside deviation, and coefficient of varia-
tion—describe the variability of outcomes around the arithmetic mean.

■■ The range is the difference between the maximum value and the minimum 
value of the dataset. The range has only a limited usefulness because it uses 
information from only two observations.

■■ The MAD for a sample is the average of the absolute deviations of observations 

from the mean, 
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■■ The coefficient of variation, CV, is the ratio of the standard deviation of a set 
of observations to their mean value. By expressing the magnitude of variation 
among observations relative to their average size, the CV permits direct com-
parisons of dispersion across different datasets. Reflecting the correction for 
scale, the CV is a scale- free measure (i.e., it has no units of measurement).

■■ Skew or skewness describes the degree to which a distribution is asymmetric 
about its mean. A return distribution with positive skewness has frequent small 
losses and a few extreme gains compared to a normal distribution. A return 
distribution with negative skewness has frequent small gains and a few extreme 
losses compared to a normal distribution. Zero skewness indicates a symmetric 
distribution of returns.

■■ Kurtosis measures the combined weight of the tails of a distribution relative 
to the rest of the distribution. A distribution with fatter tails than the normal 
distribution is referred to as fat- tailed (leptokurtic); a distribution with thin-
ner tails than the normal distribution is referred to as thin- tailed (platykurtic). 
Excess kurtosis is kurtosis minus 3, since 3 is the value of kurtosis for all normal 
distributions.

■■ The correlation coefficient is a statistic that measures the association between 
two variables. It is the ratio of covariance to the product of the two variables’ 
standard deviations. A positive correlation coefficient indicates that the two 
variables tend to move together, whereas a negative coefficient indicates that 

© CFA Institute. For candidate use only. Not for distribution.



Summary 153

the two variables tend to move in opposite directions. Correlation does not 
imply causation, simply association. Issues that arise in evaluating correlation 
include the presence of outliers and spurious correlation.
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PRACTICE PROBLEMS

1 Published ratings on stocks ranging from 1 (strong sell) to 5 (strong buy) are 
examples of which measurement scale?
A Ordinal
B Continuous
C Nominal

2 Data values that are categorical and not amenable to being organized in a logi-
cal order are most likely to be characterized as:
A ordinal data.
B discrete data.
C nominal data.

3 Which of the following data types would be classified as being categorical?
A Discrete
B Nominal
C Continuous

4 A fixed- income analyst uses a proprietary model to estimate bankruptcy proba-
bilities for a group of firms. The model generates probabilities that can take any 
value between 0 and 1. The resulting set of estimated probabilities would most 
likely be characterized as:
A ordinal data.
B discrete data.
C continuous data.

5 An analyst uses a software program to analyze unstructured data—specifically, 
management’s earnings call transcript for one of the companies in her research 
coverage. The program scans the words in each sentence of the transcript and 
then classifies the sentences as having negative, neutral, or positive sentiment. 
The resulting set of sentiment data would most likely be characterized as:
A ordinal data.
B discrete data.
C nominal data.

Use the following information to answer 
Questions 6 and 7
An equity analyst gathers total returns for three country equity indexes over the past 
four years. The data are presented below.

© 2020 CFA Institute. All rights reserved.
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Time Period Index A Index B Index C

Year t–3 15.56% 11.84% −4.34%
Year t–2 −4.12% −6.96% 9.32%
Year t–1 11.19% 10.29% −12.72%
Year t 8.98% 6.32% 21.44%

6 Each individual column of data in the table can be best characterized as:
A panel data.
B time- series data.
C cross- sectional data.

7 Each individual row of data in the table can be best characterized as:
A panel data.
B time- series data.
C cross- sectional data.

8 A two- dimensional rectangular array would be most suitable for organizing a 
collection of raw:
A panel data.
B time- series data.
C cross- sectional data.

9 In a frequency distribution, the absolute frequency measure:
A represents the percentages of each unique value of the variable.
B represents the actual number of observations counted for each unique value 

of the variable.
C allows for comparisons between datasets with different numbers of total 

observations.
10 An investment fund has the return frequency distribution shown in the follow-

ing exhibit.

Return Interval (%) Absolute Frequency

−10.0 to −7.0 3
−7.0 to −4.0 7
−4.0 to −1.0 10
−1.0 to +2.0 12
+2.0 to +5.0 23
+5.0 to +8.0 5

 Which of the following statements is correct?
A The relative frequency of the bin “−1.0 to +2.0” is 20%.
B The relative frequency of the bin “+2.0 to +5.0” is 23%.
C The cumulative relative frequency of the bin “+5.0 to +8.0” is 91.7%.

11 An analyst is using the data in the following exhibit to prepare a statistical 
report.
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Portfolio’s Deviations from Benchmark Return for a 12- Year Period (%)

Year 1 2.48 Year 7 −9.19
Year 2 −2.59 Year 8 −5.11
Year 3 9.47 Year 9 1.33
Year 4 −0.55 Year 10 6.84
Year 5 −1.69 Year 11 3.04
Year 6 −0.89 Year 12 4.72

 The cumulative relative frequency for the bin −1.71% ≤ x < 2.03% is closest to:
A 0.250.
B 0.333.
C 0.583.

Use the following information to answer ques-
tions 12 and 13
A fixed- income portfolio manager creates a contingency table of the number of bonds 
held in her portfolio by sector and bond rating. The contingency table is presented here:

Bond Rating

Sector A AA AAA

Communication Services 25 32 27
Consumer Staples 30 25 25
Energy 100 85 30
Health Care 200 100 63
Utilities 22 28 14

12 The marginal frequency of energy sector bonds is closest to:
A 27.
B 85.
C 215.

13 The relative frequency of AA rated energy bonds, based on the total count, is 
closest to:
A 10.5%.
B 31.5%.
C 39.5%.

The following information relates to Questions 
14–15
The following histogram shows a distribution of the S&P 500 Index annual returns 
for a 50- year period:
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14 The bin containing the median return is:
A 3% to 8%.
B 8% to 13%.
C 13% to 18%.

15 Based on the previous histogram, the distribution is best described as being:
A unimodal.
B bimodal.
C trimodal.

16 The following is a frequency polygon of monthly exchange rate changes in the 
US dollar/Japanese yen spot exchange rate for a four- year period. A positive 
change represents yen appreciation (the yen buys more dollars), and a negative 
change represents yen depreciation (the yen buys fewer dollars).
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Monthly Changes in the US Dollar/Japanese Yen Spot Exchange Rate
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 Based on the chart, yen appreciation:
A occurred more than 50% of the time.
B was less frequent than yen depreciation.
C in the 0.0 to 2.0 interval occurred 20% of the time.

17 A bar chart that orders categories by frequency in descending order and 
includes a line displaying cumulative relative frequency is referred to as a:
A Pareto Chart.
B grouped bar chart.
C frequency polygon.

18 Which visualization tool works best to represent unstructured, textual data?
A Tree- Map
B Scatter plot
C Word cloud

19 A tree- map is best suited to illustrate:
A underlying trends over time.
B joint variations in two variables.
C value differences of categorical groups.

20 A line chart with two variables—for example, revenues and earnings per 
share—is best suited for visualizing:
A the joint variation in the variables.
B underlying trends in the variables over time.
C the degree of correlation between the variables.

21 A heat map is best suited for visualizing the:
A frequency of textual data.
B degree of correlation between different variables.
C shape, center, and spread of the distribution of numerical data.

22 Which valuation tool is recommended to be used if the goal is to make compar-
isons of three or more variables over time?
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A Heat map
B Bubble line chart
C Scatter plot matrix

23 The annual returns for three portfolios are shown in the following exhibit. 
Portfolios P and R were created in Year 1, Portfolio Q in Year 2.

Annual Portfolio Returns (%)

Year 1 Year 2 Year 3 Year 4 Year 5

Portfolio P −3.0 4.0 5.0 3.0 7.0
Portfolio Q −3.0 6.0 4.0 8.0

Portfolio R 1.0 −1.0 4.0 4.0 3.0

 The median annual return from portfolio creation to Year 5 for:
A Portfolio P is 4.5%.
B Portfolio Q is 4.0%.
C Portfolio R is higher than its arithmetic mean annual return.

24 At the beginning of Year X, an investor allocated his retirement savings in the 
asset classes shown in the following exhibit and earned a return for Year X as 
also shown.

Asset Class
Asset Allocation 

(%)
Asset Class Return for Year X 

(%)

Large- cap US equities 20.0 8.0
Small- cap US equities 40.0 12.0
Emerging market equities 25.0 −3.0
High- yield bonds 15.0 4.0

 The portfolio return for Year X is closest to:
A 5.1%.
B 5.3%.
C 6.3%.

25 The following exhibit shows the annual returns for Fund Y.

Fund Y (%) 

Year 1 19.5
Year 2 −1.9
Year 3 19.7
Year 4 35.0
Year 5 5.7

 The geometric mean return for Fund Y is closest to:
A 14.9%.
B 15.6%.
C 19.5%.

26 A portfolio manager invests €5,000 annually in a security for four years at the 
prices shown in the following exhibit.
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Purchase Price of Security (€ per unit) 

Year 1 62.00
Year 2 76.00
Year 3 84.00
Year 4 90.00

 The average price is best represented as the:
A harmonic mean of €76.48.
B geometric mean of €77.26.
C arithmetic average of €78.00.

The following information relates to Questions 
27–28
The following exhibit shows the annual MSCI World Index total returns for a 10- year 
period.

Year 1 15.25% Year 6 30.79%

Year 2 10.02% Year 7 12.34%

Year 3 20.65% Year 8 −5.02%

Year 4 9.57% Year 9 16.54%

Year 5 −40.33% Year 10 27.37%

27 The fourth quintile return for the MSCI World Index is closest to:
A 20.65%.
B 26.03%.
C 27.37%.

28 For Year 6–Year 10, the mean absolute deviation of the MSCI World Index total 
returns is closest to:
A 10.20%.
B 12.74%.
C 16.40%.

29 Annual returns and summary statistics for three funds are listed in the follow-
ing exhibit:

Annual Returns (%)

Year Fund ABC Fund XYZ Fund PQR

Year 1 −20.0 −33.0 −14.0
Year 2 23.0 −12.0 −18.0
Year 3 −14.0 −12.0 6.0
Year 4 5.0 −8.0 −2.0
Year 5 −14.0 11.0 3.0
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Annual Returns (%)

Year Fund ABC Fund XYZ Fund PQR

Mean −4.0 −10.8 −5.0
Standard deviation 17.8 15.6 10.5

 The fund with the highest absolute dispersion is:
A Fund PQR if the measure of dispersion is the range.
B Fund XYZ if the measure of dispersion is the variance.
C Fund ABC if the measure of dispersion is the mean absolute deviation.

30 The mean monthly return and the standard deviation for three industry sectors 
are shown in the following exhibit.

Sector Mean Monthly Return (%)
Standard Deviation of 

Return (%)

Utilities (UTIL) 2.10 1.23
Materials (MATR) 1.25 1.35
Industrials (INDU) 3.01 1.52

 Based on the coefficient of variation, the riskiest sector is:
A utilities.
B materials.
C industrials.

31 The average return for Portfolio A over the past twelve months is 3%, with a 
standard deviation of 4%. The average return for Portfolio B over this same 
period is also 3%, but with a standard deviation of 6%. The geometric mean 
return of Portfolio A is 2.85%. The geometric mean return of Portfolio B is:
A less than 2.85%.
B equal to 2.85%.
C greater than 2.85%.

32 An analyst calculated the excess kurtosis of a stock’s returns as −0.75. From this 
information, we conclude that the distribution of returns is:
A normally distributed.
B thin- tailed compared to the normal distribution.
C fat- tailed compared to the normal distribution.

33 When analyzing investment returns, which of the following statements is 
correct?
A The geometric mean will exceed the arithmetic mean for a series with non- 

zero variance.
B The geometric mean measures an investment’s compound rate of growth 

over multiple periods.
C The arithmetic mean measures an investment’s terminal value over multiple 

periods.
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The following information relates to Questions 
34–38
A fund had the following experience over the past 10 years:

Year Return

1 4.5%
2 6.0%
3 1.5%
4 −2.0%
5 0.0%
6 4.5%
7 3.5%
8 2.5%
9 5.5%
10 4.0%

34 The arithmetic mean return over the 10 years is closest to:
A 2.97%.
B 3.00%.
C 3.33%.

35 The geometric mean return over the 10 years is closest to:
A 2.94%.
B 2.97%.
C 3.00%.

36 The harmonic mean return over the 10 years is closest to:
A 2.94%.
B 2.97%.
C 3.00%.

37 The standard deviation of the 10 years of returns is closest to:
A 2.40%.
B 2.53%.
C 7.58%.

38 The target semideviation of the returns over the 10 years if the target is 2% is 
closest to:
A 1.42%.
B 1.50%.
C 2.01%.

39 A correlation of 0.34 between two variables, X and Y, is best described as:
A changes in X causing changes in Y.
B a positive association between X and Y.
C a curvilinear relationship between X and Y.

© CFA Institute. For candidate use only. Not for distribution.



Practice Problems 163

40 Which of the following is a potential problem with interpreting a correlation 
coefficient?
A Outliers
B Spurious correlation
C Both outliers and spurious correlation

The following relates to questions 41 and 42
An analyst is evaluating the tendency of returns on the portfolio of stocks she man-
ages to move along with bond and real estate indexes. She gathered monthly data on 
returns and the indexes:

Returns (%)

Portfolio Returns
Bond Index 

Returns
Real Estate Index 

Returns

Arithmetic average 5.5 3.2 7.8
Standard deviation 8.2 3.4 10.3

Portfolio Returns and 
Bond Index Returns

Portfolio Returns and Real 
Estate Index Returns

Covariance 18.9 −55.9

41 Without calculating the correlation coefficient, the correlation of the portfolio 
returns and the bond index returns is:
A negative.
B zero.
C positive.

42 Without calculating the correlation coefficient, the correlation of the portfolio 
returns and the real estate index returns is:
A negative.
B zero.
C positive.

43 Consider two variables, A and B. If variable A has a mean of −0.56, variable B 
has a mean of 0.23, and the covariance between the two variables is positive, the 
correlation between these two variables is:
A negative.
B zero.
C positive.
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The following information relates to Questions 
44–45

180

160

140

120

100

80

60

40

154.45

51.51

114.25

100.49

79.74

44 The median is closest to:
A 34.51.
B 100.49.
C 102.98.

45 The interquartile range is closest to:
A 13.76.
B 25.74.
C 34.51.

The following information relates to Questions 
46–48
An analyst examined a cross- section of annual returns for 252 stocks and calculated 
the following statistics:

Arithmetic Average 9.986%
Geometric Mean 9.909%
Variance 0.001723
Skewness 0.704
Excess Kurtosis 0.503

46 The coefficient of variation is closest to:
A 0.02.
B 0.42.
C 2.41.

47 This distribution is best described as:
A negatively skewed.
B having no skewness.
C positively skewed.
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48 Compared to the normal distribution, this sample’s distribution is best 
described as having tails of the distribution with:
A less probability than the normal distribution.
B the same probability as the normal distribution.
C more probability than the normal distribution.
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SOLUTIONS

1 A is correct. Ordinal scales sort data into categories that are ordered with 
respect to some characteristic and may involve numbers to identify categories 
but do not assure that the differences between scale values are equal. The buy 
rating scale indicates that a stock ranked 5 is expected to perform better than a 
stock ranked 4, but it tells us nothing about the performance difference between 
stocks ranked 4 and 5 compared with the performance difference between 
stocks ranked 1 and 2, and so on.

2 C is correct. Nominal data are categorical values that are not amenable to being 
organized in a logical order. A is incorrect because ordinal data are categorical 
data that can be logically ordered or ranked. B is incorrect because discrete 
data are numerical values that result from a counting process; thus, they can be 
ordered in various ways, such as from highest to lowest value.

3 B is correct. Categorical data (or qualitative data) are values that describe a 
quality or characteristic of a group of observations and therefore can be used 
as labels to divide a dataset into groups to summarize and visualize. The two 
types of categorical data are nominal data and ordinal data. Nominal data are 
categorical values that are not amenable to being organized in a logical order, 
while ordinal data are categorical values that can be logically ordered or ranked. 
A is incorrect because discrete data would be classified as numerical data (not 
categorical data). C is incorrect because continuous data would be classified as 
numerical data (not categorical data).

4 C is correct. Continuous data are data that can be measured and can take on 
any numerical value in a specified range of values. In this case, the analyst is 
estimating bankruptcy probabilities, which can take on any value between 0 and 
1. Therefore, the set of bankruptcy probabilities estimated by the analyst would 
likely be characterized as continuous data. A is incorrect because ordinal data 
are categorical values that can be logically ordered or ranked. Therefore, the 
set of bankruptcy probabilities would not be characterized as ordinal data. B is 
incorrect because discrete data are numerical values that result from a counting 
process, and therefore the data are limited to a finite number of values. The pro-
prietary model used can generate probabilities that can take any value between 
0 and 1; therefore, the set of bankruptcy probabilities would not be character-
ized as discrete data.

5 A is correct. Ordinal data are categorical values that can be logically ordered or 
ranked. In this case, the classification of sentences in the earnings call transcript 
into three categories (negative, neutral, or positive) describes ordinal data, 
as the data can be logically ordered from positive to negative. B is incorrect 
because discrete data are numerical values that result from a counting process. 
In this case, the analyst is categorizing sentences (i.e., unstructured data) from 
the earnings call transcript as having negative, neutral, or positive sentiment. 
Thus, these categorical data do not represent discrete data. C is incorrect 
because nominal data are categorical values that are not amenable to being 
organized in a logical order. In this case, the classification of unstructured data 
(i.e., sentences from the earnings call transcript) into three categories (negative, 
neutral, or positive) describes ordinal (not nominal) data, as the data can be 
logically ordered from positive to negative.

6 B is correct. Time- series data are a sequence of observations of a specific vari-
able collected over time and at discrete and typically equally spaced intervals of 
time, such as daily, weekly, monthly, annually, and quarterly. In this case, each 
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column is a time series of data that represents annual total return (the specific 
variable) for a given country index, and it is measured annually (the discrete 
interval of time). A is incorrect because panel data consist of observations 
through time on one or more variables for multiple observational units. The 
entire table of data is an example of panel data showing annual total returns 
(the variable) for three country indexes (the observational units) by year. C is 
incorrect because cross- sectional data are a list of the observations of a specific 
variable from multiple observational units at a given point in time. Each row 
(not column) of data in the table represents cross- sectional data.

7 C is correct. Cross- sectional data are observations of a specific variable from 
multiple observational units at a given point in time. Each row of data in the 
table represents cross- sectional data. The specific variable is annual total return, 
the multiple observational units are the three countries’ indexes, and the given 
point in time is the time period indicated by the particular row. A is incor-
rect because panel data consist of observations through time on one or more 
variables for multiple observational units. The entire table of data is an exam-
ple of panel data showing annual total returns (the variable) for three country 
indexes (the observational units) by year. B is incorrect because time- series data 
are a sequence of observations of a specific variable collected over time and 
at discrete and typically equally spaced intervals of time, such as daily, weekly, 
monthly, annually, and quarterly. In this case, each column (not row) is a time 
series of data that represents annual total return (the specific variable) for a 
given country index, and it is measured annually (the discrete interval of time).

8 A is correct. Panel data consist of observations through time on one or more 
variables for multiple observational units. A two- dimensional rectangular array, 
or data table, would be suitable here as it is comprised of columns to hold 
the variable(s) for the observational units and rows to hold the observations 
through time. B is incorrect because a one- dimensional (not a two- dimensional 
rectangular) array would be most suitable for organizing a collection of data 
of the same data type, such as the time- series data from a single variable. C is 
incorrect because a one- dimensional (not a two- dimensional rectangular) array 
would be most suitable for organizing a collection of data of the same data type, 
such as the same variable for multiple observational units at a given point in 
time (cross- sectional data).

9 B is correct. In a frequency distribution, the absolute frequency, or simply the 
raw frequency, is the actual number of observations counted for each unique 
value of the variable. A is incorrect because the relative frequency, which is 
calculated as the absolute frequency of each unique value of the variable divided 
by the total number of observations, presents the absolute frequencies in terms 
of percentages. C is incorrect because the relative (not absolute) frequency 
provides a normalized measure of the distribution of the data, allowing compar-
isons between datasets with different numbers of total observations.

10 A is correct. The relative frequency is the absolute frequency of each bin 
divided by the total number of observations. Here, the relative frequency is cal-
culated as: (12/60) × 100 = 20%. B is incorrect because the relative frequency of 
this bin is (23/60) × 100 = 38.33%. C is incorrect because the cumulative relative 
frequency of the last bin must equal 100%.

11 C is correct. The cumulative relative frequency of a bin identifies the fraction of 
observations that are less than the upper limit of the given bin. It is determined 
by summing the relative frequencies from the lowest bin up to and including 
the given bin. The following exhibit shows the relative frequencies for all the 
bins of the data from the previous exhibit:
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Lower Limit 
(%)

Upper Limit 
(%)

Absolute 
Frequency

Relative 
Frequency

Cumulative Relative 
Frequency

−9.19 ≤ < −5.45 1 0.083 0.083
−5.45 ≤ < −1.71 2 0.167 0.250
−1.71 ≤ < 2.03 4 0.333 0.583

2.03 ≤ < 5.77 3 0.250 0.833
5.77 ≤ ≤ 9.47 2 0.167 1.000

 The bin −1.71% ≤ x < 2.03% has a cumulative relative frequency of 0.583.
12 C is correct. The marginal frequency of energy sector bonds in the portfolio is 

the sum of the joint frequencies across all three levels of bond rating, so 100 + 
85 + 30 = 215. A is incorrect because 27 is the relative frequency for energy 
sector bonds based on the total count of 806 bonds, so 215/806 = 26.7%, not 
the marginal frequency. B is incorrect because 85 is the joint frequency for AA 
rated energy sector bonds, not the marginal frequency.

13 A is correct. The relative frequency for any value in the table based on the total 
count is calculated by dividing that value by the total count. Therefore, the rela-
tive frequency for AA rated energy bonds is calculated as 85/806 = 10.5%.

 B is incorrect because 31.5% is the relative frequency for AA rated energy 
bonds, calculated based on the marginal frequency for all AA rated bonds, so 
85/(32 + 25 + 85 + 100 + 28), not based on total bond counts. C is incorrect 
because 39.5% is the relative frequency for AA rated energy bonds, calculated 
based on the marginal frequency for all energy bonds, so 85/(100 + 85 + 30), 
not based on total bond counts.

14 C is correct. Because 50 data points are in the histogram, the median return 
would be the mean of the 50/2 = 25th and (50 + 2)/2 = 26th positions. The sum 
of the return bin frequencies to the left of the 13% to 18% interval is 24. As a 
result, the 25th and 26th returns will fall in the 13% to 18% interval.

15 C is correct. The mode of a distribution with data grouped in intervals is the 
interval with the highest frequency. The three intervals of 3% to 8%, 18% to 23%, 
and 28% to 33% all have a high frequency of 7.

16 A is correct. Twenty observations lie in the interval “0.0 to 2.0,” and six observa-
tions lie in the “2.0 to 4.0” interval. Together, they represent 26/48, or 54.17%, of 
all observations, which is more than 50%.

17 A is correct. A bar chart that orders categories by frequency in descending 
order and includes a line displaying cumulative relative frequency is called a 
Pareto Chart. A Pareto Chart is used to highlight dominant categories or the 
most important groups. B is incorrect because a grouped bar chart or clustered 
bar chart is used to present the frequency distribution of two categorical vari-
ables. C is incorrect because a frequency polygon is used to display frequency 
distributions.

18 C is correct. A word cloud, or tag cloud, is a visual device for representing 
unstructured, textual data. It consists of words extracted from text with the size 
of each word being proportional to the frequency with which it appears in the 
given text. A is incorrect because a tree- map is a graphical tool for displaying 
and comparing categorical data, not for visualizing unstructured, textual data. B 
is incorrect because a scatter plot is used to visualize the joint variation in two 
numerical variables, not for visualizing unstructured, textual data.
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19 C is correct. A tree- map is a graphical tool used to display and compare 
categorical data. It consists of a set of colored rectangles to represent distinct 
groups, and the area of each rectangle is proportional to the value of the cor-
responding group. A is incorrect because a line chart, not a tree- map, is used 
to display the change in a data series over time. B is incorrect because a scatter 
plot, not a tree- map, is used to visualize the joint variation in two numerical 
variables.

20 B is correct. An important benefit of a line chart is that it facilitates showing 
changes in the data and underlying trends in a clear and concise way. Often a 
line chart is used to display the changes in data series over time. A is incorrect 
because a scatter plot, not a line chart, is used to visualize the joint variation in 
two numerical variables. C is incorrect because a heat map, not a line chart, is 
used to visualize the values of joint frequencies among categorical variables.

21 B is correct. A heat map is commonly used for visualizing the degree of cor-
relation between different variables. A is incorrect because a word cloud, or 
tag cloud, not a heat map, is a visual device for representing textual data with 
the size of each distinct word being proportional to the frequency with which 
it appears in the given text. C is incorrect because a histogram, not a heat map, 
depicts the shape, center, and spread of the distribution of numerical data.

22 B is correct. A bubble line chart is a version of a line chart where data points 
are replaced with varying- sized bubbles to represent a third dimension of the 
data. A line chart is very effective at visualizing trends in three or more vari-
ables over time. A is incorrect because a heat map differentiates high values 
from low values and reflects the correlation between variables but does not 
help in making comparisons of variables over time. C is incorrect because a 
scatterplot matrix is a useful tool for organizing scatterplots between pairs of 
variables, making it easy to inspect all pairwise relationships in one combined 
visual. However, it does not help in making comparisons of these variables over 
time.

23 C is correct. The median of Portfolio R is 0.8% higher than the mean for 
Portfolio R.

24 C is correct. The portfolio return must be calculated as the weighted mean 
return, where the weights are the allocations in each asset class:

(0.20 × 8%) + (0.40 × 12%) + (0.25 × −3%) + (0.15 × 4%) = 6.25%, or ≈ 6.3%.

25 A is correct. The geometric mean return for Fund Y is found as follows:

 Fund Y = [(1 + 0.195) × (1 − 0.019) × (1 + 0.197) × (1 + 0.350) × (1 + 0.057)]
(1/5) − 1

 = 14.9%.

26 A is correct. The harmonic mean is appropriate for determining the average 
price per unit. It is calculated by summing the reciprocals of the prices, then 
averaging that sum by dividing by the number of prices, then taking the recip-
rocal of the average:

4/[(1/62.00) + (1/76.00) + (1/84.00) + (1/90.00)] = €76.48.

27 B is correct. Quintiles divide a distribution into fifths, with the fourth quintile 
occurring at the point at which 80% of the observations lie below it. The fourth 
quintile is equivalent to the 80th percentile. To find the yth percentile (Py), 
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we first must determine its location. The formula for the location (Ly) of a yth 
percentile in an array with n entries sorted in ascending order is Ly = (n + 1) × 
(y/100). In this case, n = 10 and y = 80%, so

L80 = (10 + 1) × (80/100) = 11 × 0.8 = 8.8.

 With the data arranged in ascending order (−40.33%, −5.02%, 9.57%, 10.02%, 
12.34%, 15.25%, 16.54%, 20.65%, 27.37%, and 30.79%), the 8.8th position would 
be between the 8th and 9th entries, 20.65% and 27.37%, respectively. Using 
linear interpolation, P80 = X8 + (Ly − 8) × (X9 − X8),

 P80 = 20.65 + (8.8 − 8) × (27.37 − 20.65)
 = 20.65 + (0.8 × 6.72) = 20.65 + 5.38
 = 26.03%.

28 A is correct. The formula for mean absolute deviation (MAD) is

MAD �

�
�
� X X

n

i
i

n

1

 Column 1: Sum annual returns and divide by n to find the arithmetic mean X� �  
of 16.40%.

 Column 2: Calculate the absolute value of the difference between each year’s 
return and the mean from Column 1. Sum the results and divide by n to find 
the MAD.

 These calculations are shown in the following exhibit:

Column 1 Column 2

Year Return
X Xi −

Year 6 30.79% 14.39%

Year 7 12.34% 4.06%

Year 8 −5.02% 21.42%

Year 9 16.54% 0.14%

Year 10 27.37% 10.97%

Sum: 82.02% Sum: 50.98%
n: 5 n: 5

X :
16.40% MAD: 10.20%

29 C is correct. The mean absolute deviation (MAD) of Fund ABC’s returns is 
greater than the MAD of both of the other funds.

MAD �

�
�
� X X

n

i
i

n

1 , where X is the arithmetic mean of the series.

 MAD for Fund ABC =

� � �� � � � �� � � � � �� � � � �� � � � � �� �
�

20 4 23 4 14 4 5 4 14 4
5

14 4. %
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 MAD for Fund XYZ =

� � �� � � � � �� � � � � �� � � � � �� � � � �� �33 10 8 12 10 8 12 10 8 8 10 8 11 10 8
5

. . . . .
�� 9 8. %

 MAD for Fund PQR =

� � �� �� � � �� � � � �� � � � � �� � � � �� �
�

14 5 18 5 6 5 2 5 3 5
5

8 8. %

 A and B are incorrect because the range and variance of the three funds are as 
follows:

Fund ABC Fund XYZ Fund PQR

Range 43% 44% 24%
Variance 317 243 110

 The numbers shown for variance are understood to be in “percent squared” 
terms so that when taking the square root, the result is standard deviation in 
percentage terms. Alternatively, by expressing standard deviation and variance 
in decimal form, one can avoid the issue of units. In decimal form, the vari-
ances for Fund ABC, Fund XYZ, and Fund PQR are 0.0317, 0.0243, and 0.0110, 
respectively.

30 B is correct. The coefficient of variation (CV) is the ratio of the standard devia-
tion to the mean, where a higher CV implies greater risk per unit of return.

CVUTIL
s
X

= = =
1 23
2 10

0 59. %
. %

.

CVMATR
s
X

= = =
1 35
1 25

1 08. %
. %

.

CVINDU
s
X

= = =
1 52
3 01

0 51. %
. %

.

31 A is correct. The more disperse a distribution, the greater the difference 
between the arithmetic mean and the geometric mean.

32 B is correct. The distribution is thin- tailed relative to the normal distribution 
because the excess kurtosis is less than zero.

33 B is correct. The geometric mean compounds the periodic returns of every 
period, giving the investor a more accurate measure of the terminal value of an 
investment.

34 B is correct. The sum of the returns is 30.0%, so the arithmetic mean is 
30.0%/10 = 3.0%.

35 B is correct.

Year Return 1+ Return

1 4.5% 1.045
2 6.0% 1.060
3 1.5% 1.015
4 −2.0% 0.980
5 0.0% 1.000
6 4.5% 1.045

(continued)
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Year Return 1+ Return

7 3.5% 1.035
8 2.5% 1.025
9 5.5% 1.055
10 4.0% 1.040

 The product of the 1 + Return is 1.3402338.

 Therefore, XG � �1 3402338 110 .  = 2.9717%.
36 A is correct.

Year Return 1+ Return 1/(1+Return)

1 4.5% 1.045 0.957
2 6.0% 1.060 0.943
3 1.5% 1.015 0.985
4 −2.0% 0.980 1.020
5 0.0% 1.000 1.000
6 4.5% 1.045 0.957
7 3.5% 1.035 0.966
8 2.5% 1.025 0.976
9 5.5% 1.055 0.948
10 4.0% 1.040 0.962

Sum 9.714

 The harmonic mean return = (n/Sum of reciprocals) − 1 = (10 / 9.714) 
− 1.

 The harmonic mean return = 2.9442%.

37 B is correct.

Year Return Deviation Deviation Squared

1 4.5% 0.0150 0.000225
2 6.0% 0.0300 0.000900
3 1.5% −0.0150 0.000225
4 −2.0% −0.0500 0.002500
5 0.0% −0.0300 0.000900
6 4.5% 0.0150 0.000225
7 3.5% 0.0050 0.000025
8 2.5% −0.0050 0.000025
9 5.5% 0.0250 0.000625
10 4.0% 0.0100 0.000100

Sum 0.0000 0.005750

 The standard deviation is the square root of the sum of the squared deviations 
divided by n − 1:

 s =
0 005750

9
.  = 2.5276%.

38 B is correct.
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Year Return
Deviation Squared  
below Target of 2% 

1 4.5%

2 6.0%
3 1.5% 0.000025
4 −2.0% 0.001600
5 0.0% 0.000400

6 4.5%

7 3.5%

8 2.5%

9 5.5%

10 4.0%

Sum 0.002025

 The target semi- deviation is the square root of the sum of the squared devia-
tions from the target, divided by n − 1:

 sTarget = 0 002025
9

.  = 1.5%.

39 B is correct. The correlation coefficient is positive, indicating that the two series 
move together.

40 C is correct. Both outliers and spurious correlation are potential problems with 
interpreting correlation coefficients.

41 C is correct. The correlation coefficient is positive because the covariation is 
positive.

42 A is correct. The correlation coefficient is negative because the covariation is 
negative.

43 C is correct. The correlation coefficient is positive because the covariance is 
positive. The fact that one or both variables have a negative mean does not 
affect the sign of the correlation coefficient.

44 B is correct. The median is indicated within the box, which is the 100.49 in this 
diagram.

45 C is correct. The interquartile range is the difference between 114.25 and 79.74, 
which is 34.51.

46 B is correct. The coefficient of variation is the ratio of the standard deviation to 
the arithmetic average, or 0 001723 0 09986. .  = 0.416.

47 C is correct. The skewness is positive, so it is right- skewed (positively skewed).
48 C is correct. The excess kurtosis is positive, indicating that the distribution is 

“fat- tailed”; therefore, there is more probability in the tails of the distribution 
relative to the normal distribution.
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LEARNING OUTCOMES
Mastery The candidate should be able to:

a. define a random variable, an outcome, and an event;

b. identify the two defining properties of probability, including 
mutually exclusive and exhaustive events, and compare and 
contrast empirical, subjective, and a priori probabilities;

c. describe the probability of an event in terms of odds for and 
against the event;

d. calculate and interpret conditional probabilities;

e. demonstrate the application of the multiplication and addition 
rules for probability;

f. compare and contrast dependent and independent events;

g. calculate and interpret an unconditional probability using the 
total probability rule;

h. calculate and interpret the expected value, variance, and standard 
deviation of random variables;

i. explain the use of conditional expectation in investment 
applications;

j. interpret a probability tree and demonstrate its application to 
investment problems;

k. calculate and interpret the expected value, variance, standard 
deviation, covariances, and correlations of portfolio returns;

(continued)
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LEARNING OUTCOMES
Mastery The candidate should be able to:

l. calculate and interpret the covariances of portfolio returns using 
the joint probability function;

m. calculate and interpret an updated probability using Bayes’ 
formula;

n. identify the most appropriate method to solve a particular 
counting problem and analyze counting problems using factorial, 
combination, and permutation concepts.

INTRODUCTION, PROBABILITY CONCEPTS, AND 
ODDS RATIOS

a define a random variable, an outcome, and an event

Investment decisions are made in a risky environment. The tools that allow us to make 
decisions with consistency and logic in this setting are based on probability concepts. 
This reading presents the essential probability tools needed to frame and address 
many real- world problems involving risk. These tools apply to a variety of issues, such 
as predicting investment manager performance, forecasting financial variables, and 
pricing bonds so that they fairly compensate bondholders for default risk. Our focus 
is practical. We explore the concepts that are most important to investment research 
and practice. Among these are independence, as it relates to the predictability of 
returns and financial variables; expectation, as analysts continually look to the future 
in their analyses and decisions; and variability, variance or dispersion around expec-
tation, as a risk concept important in investments. The reader will acquire specific 
skills and competencies in using these probability concepts to understand risks and 
returns on investments.

1.1 Probability, Expected Value, and Variance
The probability concepts and tools necessary for most of an analyst’s work are rel-
atively few and straightforward but require thought to apply. This section presents 
the essentials for working with probability, expectation, and variance, drawing on 
examples from equity and fixed income analysis.

An investor’s concerns center on returns. The return on a risky asset is an example 
of a random variable.

■■ Definition of Random Variable. A random variable is a quantity whose future 
outcomes are uncertain.

■■ Definition of Outcome. An outcome is a possible value of a random variable.

Using Exhibit 1 as an example, a portfolio manager may have a return objective of 
10% a year. The portfolio manager’s focus at the moment may be on the likelihood of 
earning a return that is less than 10% over the next year. Ten percent is a particular 
value or outcome of the random variable “portfolio return.” Although we may be con-
cerned about a single outcome, frequently our interest may be in a set of outcomes. 
The concept of “event” covers both.

■■ Definition of Event. An event is a specified set of outcomes.

1
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Exhibit 1   Visualizing Probability

–50–50 5050101000

Portfolio Return (%)

Event B: Probability
Portfolio Earns < 10%
Return: Area under

Curve to Left of
Vertical Line

Event C: Probability
Portfolio Earns > 10%
Return: Area under
Curve to Right of

Vertical Line

Event A: Probability
Portfolio Earns 10% Return

An event can be a single outcome—for example, the portfolio earns a return of 
(exactly) 10%. We can capture the portfolio manager’s concerns by defining another 
event as the portfolio earns a return below 10%. This second event, referring as it 
does to all possible returns greater than or equal to −100% (the worst possible return, 
losing all the money in the portfolio) but less than 10%, contains an infinite number 
of outcomes. To save words, it is common to use a capital letter in italics to represent 
a defined event. We could define A = the portfolio earns a return of 10% and B = the 
portfolio earns a return below 10%.

To return to the portfolio manager’s concern, how likely is it that the portfolio 
will earn a return below 10%? The answer to this question is a probability: a number 
between 0 and 1 that measures the chance that a stated event will occur. If the prob-
ability is 0.65 that the portfolio earns a return below 10%, there is a 65% chance of 
that event happening. If an event is impossible, it has a probability of 0. If an event is 
certain to happen, it has a probability of 1. If an event is impossible or a sure thing, it 
is not random at all. So, 0 and 1 bracket all the possible values of a probability.

To reiterate, a probability can be thought of as the likelihood that something will 
happen. If it has a probability of 1, it is likely to happen 100% of the time, and if it 
has a probably of 0, it is likely to never happen. Some people think of probabilities as 
akin to relative frequencies. If something is expected to happen 30 times out of 100, 
the probability is 0.30. The probability is the number of ways that an (equally likely) 
event can happen divided by the total number of possible outcomes.

b identify the two defining properties of probability, including mutually 
exclusive and exhaustive events, and compare and contrast empirical, sub-
jective, and a priori probabilities

Probability has two properties, which together constitute its definition.

■■ Definition of Probability. The two defining properties of a probability are:
1 The probability of any event E is a number between 0 and 1: 0 ≤ P(E) ≤ 1.
2 The sum of the probabilities of any set of mutually exclusive and exhaustive 

events equals 1.

P followed by parentheses stands for “the probability of (the event in parentheses),” 
as in P(E) for “the probability of event E.” We can also think of P as a rule or function 
that assigns numerical values to events consistent with Properties 1 and 2.

In the above definition, the term mutually exclusive means that only one event 
can occur at a time; exhaustive means that the events cover all possible outcomes. 
Referring back to Exhibit 1, the events A = the portfolio earns a return of 10% and 
B = the portfolio earns a return below 10% are mutually exclusive because A and B 
cannot both occur at the same time. For example, a return of 8.1% means that B has 
occurred and A has not occurred. Although events A and B are mutually exclusive, 
they are not exhaustive because they do not cover outcomes such as a return of 11%. 
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Suppose we define a third event: C = the portfolio earns a return above 10%. Clearly, 
A, B, and C are mutually exclusive and exhaustive events. Each of P(A), P(B), and P(C) 
is a number between 0 and 1, and P(A) + P(B) + P(C) = 1.

Earlier, to illustrate a concept, we assumed a probability of 0.65 for a portfolio 
earning less than 10%, without justifying the particular assumption. We also talked 
about using assigned probabilities of outcomes to calculate the probability of events, 
without explaining how such a probability distribution might be estimated. Making 
actual financial decisions using inaccurate probabilities could have grave consequences. 
How, in practice, do we estimate probabilities? This topic is a field of study in itself, 
but there are three broad approaches to estimating probabilities. In investments, we 
often estimate the probability of an event as a relative frequency of occurrence based 
on historical data. This method produces an empirical probability. For example, 
suppose you noted that 51 of the 60 stocks in a particular large- cap equity index pay 
dividends. The empirical probability of the stocks in the index paying a dividend is 
P(stock is dividend paying) = 51 / 60 = 0.85.

Relationships must be stable through time for empirical probabilities to be accu-
rate. We cannot calculate an empirical probability of an event not in the historical 
record or a reliable empirical probability for a very rare event. In some cases, then, 
we may adjust an empirical probability to account for perceptions of changing rela-
tionships. In other cases, we have no empirical probability to use at all. We may also 
make a personal assessment of probability without reference to any particular data. 
Another type of probability is a subjective probability, one drawing on personal or 
subjective judgment. Subjective probabilities are of great importance in investments. 
Investors, in making buy and sell decisions that determine asset prices, often draw 
on subjective probabilities.

For many well- defined problems, we can deduce probabilities by reasoning about 
the problem. The resulting probability is an a priori probability, one based on log-
ical analysis rather than on observation or personal judgment. Because a priori and 
empirical probabilities generally do not vary from person to person, they are often 
grouped as objective probabilities.

For examples of the three types of probabilities, suppose you want to estimate the 
probability of flipping a coin and getting exactly two heads out of five flips. For the 
empirical probability, you do the experiment 100 times (five flips each time) and find 
that you get two heads 33 times. The empirical probability would be 33/100 = 0.33. For 
a subjective judgement, you think the probability is somewhere between 0.25 and 0.50, 
so you split the difference and choose 0.375. For the a priori probability, you assume 
that the binomial probability function (discussed later in the curriculum) applies, and 
the mathematical probability of two heads out of five flips is 0.3125.

c describe the probability of an event in terms of odds for and against the 
event

Another way of stating probabilities often encountered in investments is in terms 
of odds—for instance, “the odds for E” or the “odds against E.” A probability is the 
fraction of the time you expect an event to occur, and the odds for an event is the 
probability that an event will occur divided by the probability that the event will not 
occur. Consider a football team that has a 0.25 probability of winning the World Cup, 
and a 0.75 probability of losing. The odds for winning are 0.25/0.75 = 0.33 (and the 
odds for losing are 0.75/0.25 = 3.0). If another team has a 0.80 probability of winning, 
the odds for winning would be 0.80/0.20 = 4.0. If, for a third team, the probability of 
winning was 0.50, the odds are even: odds = 0.50/0.50 = 1. If the probability is low, 
the odds are very close to the probability. For example, if the probability of winning 
is 0.05, the odds for winning are 0.05/0.95 = 0.0526.
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EXAMPLE 1  

Odds of Passing a Quantitative Methods Investment 
Course
Two of your colleagues are taking a quantitative methods investment course.

1 If your first colleague has a 0.40 probability of passing, what are his odds 
for passing?

2 If your second colleague has odds of passing of 4 to 1, what is the proba-
bility of her passing?

Solution for 1:
The odds are the probability of passing divided by the probability of not passing. 
The odds are 0.40 / 0.60 = 2/3 ≈ 0.667.

Solution for 2: 
The odds = Probability (passing) / Probability (not passing). If Y = Probability 
of passing, then 4 = Y / (1 – Y). Solving for Y, we get 0.80 as the probability of 
passing.

We interpret probabilities stated in terms of odds as follows:

■■ Probability Stated as Odds. Given a probability P(E),
1 Odds for E = P(E)/[1 − P(E)]. The odds for E are the probability of E divided 

by 1 minus the probability of E. Given odds for E of “a to b,” the implied 
probability of E is a/(a + b).

In the example, the statement that your second colleague’s odds of passing the 
exam are 4 to 1 means that the probability of the event is 4/(4 + 1) = 4/5 = 0.80. 
2 Odds against E = [1 − P(E)]/P(E), the reciprocal of odds for E. Given odds 

against E of “a to b,” the implied probability of E is b/(a + b).

In the example, if the odds against your second colleague passing the exam are 
1 to 4, this means that the probability of the event is 1/(4 + 1) = 1/5 = 0.20. 
To further explain odds for an event, if P(E) = 1/8, the odds for E are (1/8)/(7/8) = 

(1/8)(8/7) = 1/7, or “1 to 7.” For each occurrence of E, we expect seven cases of non- 
occurrence; out of eight cases in total, therefore, we expect E to happen once, and the 
probability of E is 1/8. In wagering, it is common to speak in terms of the odds against 
something, as in Statement 2. For odds of “15 to 1” against E (an implied probability 
of E of 1/16), a $1 wager on E, if successful, returns $15 in profits plus the $1 staked 
in the wager. We can calculate the bet’s anticipated profit as follows:

Win: Probability = 1/16; Profit =$15
Loss: Probability = 15/16; Profit = −$1
Anticipated profit = (1/16)($15) + (15/16)(−$1) = $0

Weighting each of the wager’s two outcomes by the respective probability of the out-
come, if the odds (probabilities) are accurate, the anticipated profit of the bet is $0.
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EXAMPLE 2  

Profiting from Inconsistent Probabilities
You are examining the common stock of two companies in the same industry in 
which an important antitrust decision will be announced next week. The first 
company, SmithCo Corporation, will benefit from a governmental decision that 
there is no antitrust obstacle related to a merger in which it is involved. You 
believe that SmithCo’s share price reflects a 0.85 probability of such a decision. 
A second company, Selbert Corporation, will equally benefit from a “go ahead” 
ruling. Surprisingly, you believe Selbert stock reflects only a 0.50 probability of a 
favorable decision. Assuming your analysis is correct, what investment strategy 
would profit from this pricing discrepancy?

Consider the logical possibilities. One is that the probability of 0.50 reflected 
in Selbert’s share price is accurate. In that case, Selbert is fairly valued, but 
SmithCo is overvalued, because its current share price overestimates the prob-
ability of a “go ahead” decision. The second possibility is that the probability of 
0.85 is accurate. In that case, SmithCo shares are fairly valued, but Selbert shares, 
which build in a lower probability of a favorable decision, are undervalued. You 
diagram the situation as shown in Exhibit 2.

Exhibit 2   Worksheet for Investment Problem

True Probability of a “Go Ahead” Decision

0.50 0.85

SmithCo Shares Overvalued Shares Fairly Valued
Selbert Shares Fairly Valued Shares Undervalued
Strategy Short- Sell Smith / Sell Smith /

Buy Selbert Buy Selbert

The 0.50 probability column shows that Selbert shares are a better value than 
SmithCo shares. Selbert shares are also a better value if a 0.85 probability is 
accurate. Thus, SmithCo shares are overvalued relative to Selbert shares.

Your investment actions depend on your confidence in your analysis and on 
any investment constraints you face (such as constraints on selling stock short). 
Selling short or shorting stock means selling borrowed shares in the hope of 
repurchasing them later at a lower price. A conservative strategy would be to 
buy Selbert shares and reduce or eliminate any current position in SmithCo. The 
most aggressive strategy is to short SmithCo stock (relatively overvalued) and 
simultaneously buy the stock of Selbert (relatively undervalued). The prices of 
SmithCo and Selbert shares reflect probabilities that are not consistent. According 
to one of the most important probability results for investments, the Dutch 
Book Theorem, inconsistent probabilities create profit opportunities. In our 
example, investors’ buy and sell decisions exploit the inconsistent probabilities 
to eliminate the profit opportunity and inconsistency.
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CONDITIONAL AND JOINT PROBABILITY

d calculate and interpret conditional probabilities

To understand the meaning of a probability in investment contexts, we need to 
distinguish between two types of probability: unconditional and conditional. Both 
unconditional and conditional probabilities satisfy the definition of probability stated 
earlier, but they are calculated or estimated differently and have different interpreta-
tions. They provide answers to different questions.

The probability in answer to the straightforward question “What is the proba-
bility of this event A?” is an unconditional probability, denoted P(A). Suppose the 
question is “What is the probability that the stock earns a return above the risk- free 
rate (event A)?” The answer is an unconditional probability that can be viewed as the 
ratio of two quantities. The numerator is the sum of the probabilities of stock returns 
above the risk- free rate. Suppose that sum is 0.70. The denominator is 1, the sum of 
the probabilities of all possible returns. The answer to the question is P(A) = 0.70.

Contrast the question “What is the probability of A?” with the question “What 
is the probability of A, given that B has occurred?” The probability in answer to this 
last question is a conditional probability, denoted P(A | B) (read: “the probability 
of A given B”).

Suppose we want to know the probability that the stock earns a return above the 
risk- free rate (event A), given that the stock earns a positive return (event B). With the 
words “given that,” we are restricting returns to those larger than 0%—a new element 
in contrast to the question that brought forth an unconditional probability. The con-
ditional probability is calculated as the ratio of two quantities. The numerator is the 
sum of the probabilities of stock returns above the risk- free rate; in this particular 
case, the numerator is the same as it was in the unconditional case, which we gave as 
0.70. The denominator, however, changes from 1 to the sum of the probabilities for 
all outcomes (returns) above 0%. Suppose that number is 0.80, a larger number than 
0.70 because returns between 0 and the risk- free rate have some positive probability 
of occurring. Then P(A | B) = 0.70/0.80 = 0.875. If we observe that the stock earns a 
positive return, the probability of a return above the risk- free rate is greater than the 
unconditional probability, which is the probability of the event given no other infor-
mation. To review, an unconditional probability is the probability of an event without 
any restriction (i.e., a standalone probability). A conditional probability, in contrast, 
is a probability of an event given that another event has occurred.

To state an exact definition of conditional probability, we first need to introduce the 
concept of joint probability. Suppose we ask the question “What is the probability of 
both A and B happening?” The answer to this question is a joint probability, denoted 
P(AB) (read: “the probability of A and B”). If we think of the probability of A and the 
probability of B as sets built of the outcomes of one or more random variables, the 
joint probability of A and B is the sum of the probabilities of the outcomes they have 
in common. For example, consider two events: the stock earns a return above the risk- 
free rate (A) and the stock earns a positive return (B). The outcomes of A are contained 
within (a subset of ) the outcomes of B, so P(AB) equals P(A). We can now state a 
formal definition of conditional probability that provides a formula for calculating it.

■■ Definition of Conditional Probability. The conditional probability of A given 
that B has occurred is equal to the joint probability of A and B divided by the 
probability of B (assumed not to equal 0).

P(A | B) = P(AB)/P(B), P(B) ≠ 0  

2

(1)
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For example, suppose B happens half the time, P(B) = 0.50, and A and B both happen 
10% of the time, P(AB) = 0.10. What is the probability that A happens, given that B 
happens? That is P(A | B) = P(AB)/P(B) = 0.10 / 0.50 = 0.20.

e demonstrate the application of the multiplication and addition rules for 
probability

Sometimes we know the conditional probability P(A | B) and we want to know the 
joint probability P(AB). We can obtain the joint probability from the following mul-
tiplication rule for probabilities, Equation 1 rearranged.

■■ Multiplication Rule for Probability. The joint probability of A and B can be 
expressed as

P(AB) = P(A | B)P(B)  

With the same numbers above, if B happens 50% of the time, and the probability 
of A given that B happens is 20%, the joint probability of A and B happening is P(AB) 
= P(A | B)P(B) = 0.20 × 0.50 = 0.10.

EXAMPLE 3  

Conditional Probabilities and Predictability of Mutual 
Fund Performance (1)
An analyst conducts a study of the returns of 200 mutual funds over a two- year 
period. For each year, the total returns for the funds were ranked, and the top 
50% of funds were labeled winners; the bottom 50% were labeled losers. Exhibit 3 
shows the percentage of those funds that were winners in two consecutive years, 
winners in one year and then losers in the next year, losers then winners, and 
finally losers in both years. The winner–winner entry, for example, shows that 
66% of the first- year winner funds were also winners in the second year. The 
four entries in the table can be viewed as conditional probabilities.

Exhibit 3   Persistence of Returns: Conditional Probability for Year 2 
Performance Given Year 1 Performance

Year 2 Winner Year 2 Loser

Year 1 Winner 66% 34%
Year 1 Loser 34% 66%

Based on the data in Exhibit 3, answer the following questions:

1 State the four events needed to define the four conditional probabilities.
2 State the four entries of the table as conditional probabilities using the 

form P(this event | that event) = number.
3 Are the conditional probabilities in Question 2 empirical, a priori, or sub-

jective probabilities?
4 Using information in the table, calculate the probability of the event a 

fund is a loser in both Year 1 and Year 2. (Note that because 50% of funds 
are categorized as losers in each year, the unconditional probability that a 
fund is labeled a loser in either year is 0.5.)

(2)
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Solution to 1:
The four events needed to define the conditional probabilities are as follows:

Fund is a Year 1 winner 
Fund is a Year 1 loser
Fund is a Year 2 loser
Fund is a Year 2 winner

Solution to 2:
From Row 1:

P(fund is a Year 2 winner | fund is a Year 1 winner) = 0.66
P(fund is a Year 2 loser | fund is a Year 1 winner) = 0.34

From Row 2:

P(fund is a Year 2 winner | fund is a Year 1 loser) = 0.34
P(fund is a Year 2 loser | fund is a Year 1 loser) = 0.66

Solution to 3:
These probabilities are calculated from data, so they are empirical probabilities.

Solution to 4:
The estimated probability is 0.33. Let A represent the event that a fund is a Year 
2 loser, and let B represent the event that the fund is a Year 1 loser. Therefore, 
the event AB is the event that a fund is a loser in both Year 1 and Year 2. From 
Exhibit 3, P(A | B) = 0.66 and P(B) = 0.50. Thus, using Equation 2, we find that

P(AB) = P(A | B)P(B) = 0.66(0.50) = 0.33

or a probability of 0.33. Note that Equation 2 states that the joint probability of 
A and B equals the probability of A given B times the probability of B. Because 
P(AB) = P(BA), the expression P(AB) = P(BA) = P(B | A)P(A) is equivalent to 
Equation 2.

When we have two events, A and B, that we are interested in, we often want to know 
the probability that either A or B occurs. Here the word “or” is inclusive, meaning that 
either A or B occurs or that both A and B occur. Put another way, the probability of 
A or B is the probability that at least one of the two events occurs. Such probabilities 
are calculated using the addition rule for probabilities.

■■ Addition Rule for Probabilities. Given events A and B, the probability that A 
or B occurs, or both occur, is equal to the probability that A occurs, plus the 
probability that B occurs, minus the probability that both A and B occur.

P(A or B) = P(A) + P(B) – P(AB)  

If we think of the individual probabilities of A and B as sets built of outcomes of 
one or more random variables, the first step in calculating the probability of A or B 
is to sum the probabilities of the outcomes in A to obtain P(A). If A and B share any 
outcomes, then if we now added P(B) to P(A), we would count twice the probabilities 
of those shared outcomes. So we add to P(A) the quantity [P(B) − P(AB)], which is the 
probability of outcomes in B net of the probability of any outcomes already counted 
when we computed P(A). Exhibit 4 illustrates this process; we avoid double- counting 
the outcomes in the intersection of A and B by subtracting P(AB). As an example of 

(3)
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the calculation, if P(A) = 0.50, P(B) = 0.40, and P(AB) = 0.20, then P(A or B) = 0.50 + 
0.40 − 0.20 = 0.70. Only if the two events A and B were mutually exclusive, so that 
P(AB) = 0, would it be correct to state that P(A or B) = P(A) + P(B).

Exhibit 4   Addition Rule for Probabilities 

A
A

and
B

B

Example 4 illustrates the relation between empirical frequencies and unconditional, 
conditional, and joint probabilities as well as the multiplication and addition rules 
for probability.

EXAMPLE 4  

Frequencies and Probability Concepts
Analysts often discuss the frequencies of events as well as their probabilities. 
In Exhibit 5, there are 150 cells, each representing one trading day. Outcome A, 
one of the 80 trading days when the stock market index increased, is represented 
by the dark- shaded rectangle with 80 cells. Outcome B, one the 30 trading days 
when interest rates decreased, is represented by the light -bordered rectangle 
with 30 cells. The overlap between these two rectangles, when both events A and 
B occurred—the stock market index increased, and interest rates decreased—
happened 15 times and is represented by the intermediate- shaded rectangle.

© CFA Institute. For candidate use only. Not for distribution.



Conditional and Joint Probability 185

Exhibit 5   Frequencies for Two Events

Not A or B

A and B B

A

■■ The frequency of A (stock market index increased) is 80 and has an 
unconditional probability P(A) = 80/150 = 0.533.

■■ The frequency of B (interest rates decreased) is 30 and has an uncondi-
tional probability P(B) = 30/150 = 0.20.

■■ The frequency of A and B (stock market index increased, and interest 
rates decreased) is 15 and has a joint probability, P(AB) = 15/150 = 0.10.

The frequency of A or B (stock market index increased or interest rates 
decreased is 95, and P(A or B) is 95/150 = 0.633. Using the addition rule for 
probabilities, the probability of A or B is P(A or B) = P(A) + P(B) – P(AB) = 
80/150 + 30/150 – 15/150 = 95/150 = 0.633. The probability of not A or B (stock 
market index did not increase or interest rates did not decrease) = 1 – 95/150 = 
55/150 = 0.367.

The conditional probability of A given B, P(A|B), stock market index increased 
given that interest rates decreased, was 15/30 = 0.50, which is also P(A|B) = 
P(AB) / P(B) = (15/150) / (30/150) = 0.10 / 0.20 = 0.50

The next example shows how much useful information can be obtained using the 
probability rules presented to this point.

EXAMPLE 5  

Probability of a Limit Order Executing
You have two buy limit orders outstanding on the same stock. A limit order to 
buy stock at a stated price is an order to buy at that price or lower. A number 
of vendors, including an internet service that you use, supply the estimated 
probability that a limit order will be filled within a stated time horizon, given 
the current stock price and the price limit. One buy order (Order 1) was placed 
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at a price limit of $10. The probability that it will execute within one hour is 
0.35. The second buy order (Order 2) was placed at a price limit of $9.75; it has 
a 0.25 probability of executing within the same one- hour time frame.

1 What is the probability that either Order 1 or Order 2 will execute?
2 What is the probability that Order 2 executes, given that Order 1 

executes?

Solution to 1:
The probability is 0.35. The two probabilities that are given are P(Order 1 exe-
cutes) = 0.35 and P(Order 2 executes) = 0.25. Note that if Order 2 executes, it 
is certain that Order 1 also executes because the price must pass through $10 
to reach $9.75. Thus,

P(Order 1 executes | Order 2 executes) = 1

and using the multiplication rule for probabilities,
P(Order 1 executes and Order 2 executes) = P(Order 1 executes |  
Order 2 executes)P(Order 2 executes) = 1(0.25) = 0.25

To answer the question, we use the addition rule for probabilities:
P(Order 1 executes or Order 2 executes) = P(Order 1 executes)  
+ P(Order 2 executes) − P(Order 1 executes and Order 2 executes)  
= 0.35 + 0.25 − 0.25 = 0.35

Note that the outcomes for which Order 2 executes are a subset of the out-
comes for which Order 1 executes. After you count the probability that Order 
1 executes, you have counted the probability of the outcomes for which Order 
2 also executes. Therefore, the answer to the question is the probability that 
Order 1 executes, 0.35.

Solution to 2:
If the first order executes, the probability that the second order executes is 
0.714. In the solution to Part 1, you found that P(Order 1 executes and Order 2 
executes) = P(Order 1 executes | Order 2 executes)P(Order 2 executes) = 1(0.25) 
= 0.25. An equivalent way to state this joint probability is useful here:

P(Order 1 executes and Order 2 executes) = 0.25  
= P(Order 2 executes | Order 1 executes)P(Order 1 executes)

Because P(Order 1 executes) = 0.35 was a given, you have one equation with 
one unknown:

0.25 = P(Order 2 executes | Order 1 executes)(0.35) 

You conclude that P(Order 2 executes | Order 1 executes) = 0.25/0.35 = 0.714. 
You can also use Equation 1 to obtain this answer.

f compare and contrast dependent and independent events

The concepts of independence and dependence are of great interest to investment 
analysts. These concepts bear on such basic investment questions as which financial 
variables are useful for investment analysis, whether asset returns can be predicted, 
and whether superior investment managers can be selected based on their past records.

Two events are independent if the occurrence of one event does not affect the 
probability of occurrence of the other event.

■■ Definition of Independent Events. Two events A and B are independent if and 
only if P(A | B) = P(A) or, equivalently, P(B | A) = P(B).

© CFA Institute. For candidate use only. Not for distribution.



Conditional and Joint Probability 187

The logic of independence is clear: A and B are independent if the conditional prob-
ability of A given B, P(A | B), is the same as the unconditional probability of A, P(A). 
Independence means that knowing B tells you nothing about A.

For an example of independent events, suppose that event A is the bankruptcy of 
Company A, and event B is the bankruptcy of Company B. If the probability of bank-
ruptcy of Company A is P(A) = 0.20, and the probability of bankruptcy of Company 
A given that Company B goes bankrupt is the same, P(A | B) = 0.20, then event A is 
independent of event B.

When two events are not independent, they are dependent: The probability of 
occurrence of one is related to the occurrence of the other. If we are trying to forecast 
one event, information about a dependent event may be useful, but information about 
an independent event will not be useful. For example, suppose an announcement is 
released that a biotech company will be acquired at an attractive price by another 
company. If the prices of pharmaceutical companies increase as a result of this news, 
the companies’ stock prices are not independent of the biotech takeover announcement 
event. For a different example, if two events are mutually exclusive, then knowledge 
that one event has occurred gives us information that the other (mutually exclusive) 
event cannot occur.

When two events are independent, the multiplication rule for probabilities, 
Equation 2, simplifies because P(A | B) in that equation then equals P(A).

■■ Multiplication Rule for Independent Events. When two events are inde-
pendent, the joint probability of A and B equals the product of the individual 
probabilities of A and B.

P(AB) = P(A)P(B)  

Therefore, if we are interested in two independent events with probabilities of 0.75 
and 0.50, respectively, the probability that both will occur is 0.375 = 0.75(0.50). The 
multiplication rule for independent events generalizes to more than two events; for 
example, if A, B, and C are independent events, then P(ABC) = P(A)P(B)P(C).

EXAMPLE 6  

BankCorp’s Earnings per Share (1)
As part of your work as a banking industry analyst, you build models for forecast-
ing earnings per share of the banks you cover. Today you are studying BankCorp. 
The historical record shows that in 55% of recent quarters, BankCorp’s EPS has 
increased sequentially, and in 45% of quarters, EPS has decreased or remained 
unchanged sequentially. At this point in your analysis, you are assuming that 
changes in sequential EPS are independent.

Earnings per share for 2Q:Year 1 (that is, EPS for the second quarter of Year 
1) were larger than EPS for 1Q:Year 1.

1 What is the probability that 3Q:Year 1 EPS will be larger than 2Q:Year 1 
EPS (a positive change in sequential EPS)?

2 What is the probability that EPS decreases or remains unchanged in the 
next two quarters?

Solution to 1:
Under the assumption of independence, the probability that 3Q:Year 1 EPS will 
be larger than 2Q:Year 1 EPS is the unconditional probability of positive change, 
0.55. The fact that 2Q:Year 1 EPS was larger than 1Q:Year 1 EPS is not useful 
information, because the next change in EPS is independent of the prior change.

(4)
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Solution to 2:
Assuming independence, the probability is 0.2025 = 0.45(0.45). 

The following example illustrates how difficult it is to satisfy a set of independent 
criteria even when each criterion by itself is not necessarily stringent.

EXAMPLE 7  

Screening Stocks for Investment
You have developed a stock screen—a set of criteria for selecting stocks. Your 
investment universe (the set of securities from which you make your choices) is 
905 large- and medium- cap US equities, specifically all stocks that are members 
of the S&P 500 and S&P 400 Indexes. Your criteria capture different aspects of 
the stock selection problem; you believe that the criteria are independent of 
each other, to a close approximation.

Criterion Number of stocks 
meeting criterion

Fraction of stocks 
meeting criterion

First valuation criterion 556 0.614
Second valuation criterion 489 0.540
Analyst coverage criterion 600 0.663
Profitability criterion 490 0.541
Financial strength criterion 313 0.346

How many stocks do you expect to pass your screen?
Only 37 stocks out of 905 should pass through your screen. If you define five 

events—the stock passes the first valuation criterion, the stock passes the second 
valuation criterion, the stock passes the analyst coverage criterion, the company 
passes the profitability criterion, the company passes the financial strength cri-
terion (say events A, B, C, D, and E, respectively)—then the probability that a 
stock will pass all five criteria, under independence, is

P(ABCDE) = P(A)P(B)P(C)P(D)P(E) = (0.614)(0.540)(0.663)(0.541)(0.346) = 
0.0411

Although only one of the five criteria is even moderately strict (the strictest lets 
34.6% of stocks through), the probability that a stock can pass all five criteria is 
only 0.0411, or about 4%. If the criteria are independent, the size of the list of 
candidate investments is expected to be 0.0411(905) = 37 stocks.

An area of intense interest to investment managers and their clients is whether 
records of past performance are useful in identifying repeat winners and losers. The 
following example shows how this issue relates to the concept of independence.
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EXAMPLE 8  

Conditional Probabilities and Predictability of Mutual 
Fund Performance (2)
The purpose of the mutual fund study introduced in Example 3 was to address 
the question of repeat mutual fund winners and losers. If the status of a fund as 
a winner or a loser in one year is independent of whether it is a winner in the 
next year, the practical value of performance ranking is questionable. Using the 
four events defined in Example 3 as building blocks, we can define the following 
events to address the issue of predictability of mutual fund performance:

Fund is a Year 1 winner and fund is a Year 2 winner
Fund is a Year 1 winner and fund is a Year 2 loser
Fund is a Year 1 loser and fund is a Year 2 winner
Fund is a Year 1 loser and fund is a Year 2 loser

In Part 4 of Example 3, you calculated that
P(fund is a Year 2 loser and fund is a Year 1 loser) = 0.33

If the ranking in one year is independent of the ranking in the next year, what 
will you expect P(fund is a Year 2 loser and fund is a Year 1 loser) to be? Interpret 
the empirical probability 0.33.

By the multiplication rule for independent events, P(fund is a Year 2 loser 
and fund is a Year 1 loser) = P(fund is a Year 2 loser)P(fund is a Year 1 loser). 
Because 50% of funds are categorized as losers in each year, the unconditional 
probability that a fund is labeled a loser in either year is 0.50. Thus P(fund is a 
Year 2 loser)P(fund is a Year 1 loser) = 0.50(0.50) = 0.25. If the status of a fund 
as a loser in one year is independent of whether it is a loser in the prior year, 
we conclude that P(fund is a Year 2 loser and fund is a Year 1 loser) = 0.25. This 
probability is a priori because it is obtained from reasoning about the problem. 
You could also reason that the four events described above define categories and 
that if funds are randomly assigned to the four categories, there is a 1/4 proba-
bility of fund is a Year 1 loser and fund is a Year 2 loser. If the classifications in 
Year 1 and Year 2 were dependent, then the assignment of funds to categories 
would not be random. The empirical probability of 0.33 is above 0.25. Is this 
apparent predictability the result of chance? Further analysis would be necessary 
to determine whether these results would allow you to reject the hypothesis that 
investment returns are independent between Year 1 and Year 2.

g calculate and interpret an unconditional probability using the total proba-
bility rule

In many practical problems, we logically analyze a problem as follows: We for-
mulate scenarios that we think affect the likelihood of an event that interests us. We 
then estimate the probability of the event, given the scenario. When the scenarios 
(conditioning events) are mutually exclusive and exhaustive, no possible outcomes 
are left out. We can then analyze the event using the total probability rule. This rule 
explains the unconditional probability of the event in terms of probabilities conditional 
on the scenarios.
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The total probability rule is stated below for two cases. Equation 5 gives the sim-
plest case, in which we have two scenarios. One new notation is introduced: If we 
have an event or scenario S, the event not-S, called the complement of S, is written 
SC. Note that P(S) + P(SC) = 1, as either S or not-S must occur. Equation 6 states the 
rule for the general case of n mutually exclusive and exhaustive events or scenarios.

■■ Total Probability Rule.

P A P AS P AS

P A S P S P A S P S

C

C C

� � � � � � � �
� � � � � � � � � �| |

P A P AS P AS P AS

P A S P S P A S P S P A
n� � � � � � � � � � � �

� � � � � � � � � � � �
1 2

1 1 2 2



| | || S P Sn n� � � �

where S1, S2, …, Sn are mutually exclusive and exhaustive scenarios or events.

Equation 6 states the following: The probability of any event [P(A)] can be expressed 
as a weighted average of the probabilities of the event, given scenarios [terms such 
P(A | S1)]; the weights applied to these conditional probabilities are the respective 
probabilities of the scenarios [terms such as P(S1) multiplying P(A | S1)], and the 
scenarios must be mutually exclusive and exhaustive. Among other applications, this 
rule is needed to understand Bayes’ formula, which we discuss later.

Exhibit 6 is a visual representation of the total probability rule. Panel A illustrates 
Equation  5 for the total probability rule when there are two scenarios (S and its 
complement SC). For two scenarios, the probabilities of S and SC sum to 1, and the 
probability of A is a weighted average where the probability of A in each scenario is 
weighted by the probability of each scenario. Panel B of Exhibit 6 illustrates Equation 6 
for the total probability rule when there are n scenarios. The scenarios are mutually 
exclusive and exhaustive, and the sum of the probabilities for the scenarios is 1. Like 
the two- scenario case, the probability of A given the n-scenarios is a weighted average 
of the conditional probabilities of A in each scenario, using as weights the probability 
of each scenario.

(5)

(6)
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Exhibit 6   The Total Probability Rule for Two Scenarios and for n Scenarios 

Σ

A. Total Probability Rule for Two Scenarios (S and Sc) 

P(S) + P(Sc) = 1 ;  P(A) = P(AS) + P(ASc) = P(A | S) P(S) + P(A | Sc) P(Sc)

S

A | S A | Sc

Sc

B.  Total Probability Rule for n Scenarios 

S2S1 S3 ...

...

A | S2

A | S3

A | S1

A | Sn

P(Si) = 1

i=1

n

Sn

S1, S2, … Sn, are mutually exclusive and exhaustive scenarios, such that         

        P(A) = P(AS1) + P(AS2) + … + P(ASn)
= P(A | S1) P(S1) + P(A | S2) P(S2) + … + P(A | Sn) P(Sn) 

In the next example, we use the total probability rule to develop a consistent set 
of views about BankCorp’s earnings per share.

EXAMPLE 9  

BankCorp’s Earnings per Share (2)
You are continuing your investigation into whether you can predict the direction 
of changes in BankCorp’s quarterly EPS. You define four events:
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Event Probability

A = Change in sequential EPS is positive next quarter 0.55
AC = Change in sequential EPS is 0 or negative next quarter 0.45
S = Change in sequential EPS is positive in the prior quarter 0.55
SC = Change in sequential EPS is 0 or negative in the prior quarter 0.45

On inspecting the data, you observe some persistence in EPS changes: Increases 
tend to be followed by increases, and decreases by decreases. The first probabil-
ity estimate you develop is P(change in sequential EPS is positive next quarter 
| change in sequential EPS is 0 or negative in the prior quarter) = P(A | SC) = 
0.40. The most recent quarter’s EPS (2Q:Year 1) is announced, and the change 
is a positive sequential change (the event S). You are interested in forecasting 
EPS for 3Q:Year 1.

1 Write this statement in probability notation: “the probability that the 
change in sequential EPS is positive next quarter, given that the change in 
sequential EPS is positive the prior quarter.”

2 Calculate the probability in Part 1. (Calculate the probability that is con-
sistent with your other probabilities or beliefs.)

Solution to 1:
In probability notation, this statement is written P(A | S).

Solution to 2:
The probability is 0.673 that the change in sequential EPS is positive for 3Q:Year 
1, given the positive change in sequential EPS for 2Q:Year 1, as shown below.

According to Equation 5, P(A) = P(A | S)P(S) + P(A | SC)P(SC). The values 
of the probabilities needed to calculate P(A | S) are already known: P(A) = 0.55, 
P(S) = 0.55, P(SC) = 0.45, and P(A | SC) = 0.40. Substituting into Equation 5,

0.55 = P(A | S)(0.55) + 0.40(0.45) 

Solving for the unknown, P(A | S) = [0.55 − 0.40(0.45)]/0.55 = 0.672727, or 0.673.
You conclude that P(change in sequential EPS is positive next quarter | change 

in sequential EPS is positive the prior quarter) = 0.673. Any other probability is 
not consistent with your other estimated probabilities. Reflecting the persistence 
in EPS changes, this conditional probability of a positive EPS change, 0.673, is 
greater than the unconditional probability of an EPS increase, 0.55.

EXPECTED VALUE (MEAN), VARIANCE, AND 
CONDITIONAL MEASURES OF EXPECTED VALUE AND 
VARIANCE

h calculate and interpret the expected value, variance, and standard devia-
tion of random variables

3
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The expected value of a random variable is an essential quantitative concept in invest-
ments. Investors continually make use of expected values—in estimating the rewards 
of alternative investments, in forecasting EPS and other corporate financial variables 
and ratios, and in assessing any other factor that may affect their financial position. 
The expected value of a random variable is defined as follows:

■■ Definition of Expected Value. The expected value of a random variable is the 
probability- weighted average of the possible outcomes of the random variable. 
For a random variable X, the expected value of X is denoted E(X).

Expected value (for example, expected stock return) looks either to the future, as a 
forecast, or to the “true” value of the mean (the population mean). We should dis-
tinguish expected value from the concepts of historical or sample mean. The sample 
mean also summarizes in a single number a central value. However, the sample mean 
presents a central value for a particular set of observations as an equally weighted 
average of those observations. In sum, the contrast is forecast versus historical, or 
population versus sample.

EXAMPLE 10  

BankCorp’s Earnings per Share (3)
You continue with your analysis of BankCorp’s EPS. In Exhibit  7, you have 
recorded a probability distribution for BankCorp’s EPS for the current fiscal year.

Exhibit 7   Probability Distribution for BankCorp’s EPS

Probability EPS ($)

0.15 2.60
0.45 2.45
0.24 2.20
0.16 2.00

1.00

What is the expected value of BankCorp’s EPS for the current fiscal year?
Following the definition of expected value, list each outcome, weight it by 

its probability, and sum the terms.

 E(EPS) = 0.15($2.60) + 0.45($2.45) + 0.24($2.20) + 0.16($2.00) = $2.3405

The expected value of EPS is $2.34.

An equation that summarizes your calculation in Example 10 is

E X P X X P X X P X X P X Xn n i i
i

n
� � � � � � � � � � � � � � �

�
�1 1 2 2

1


where Xi is one of n possible outcomes of the random variable X.

(7)
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The expected value is our forecast. Because we are discussing random quantities, 
we cannot count on an individual forecast being realized (although we hope that, on 
average, forecasts will be accurate). It is important, as a result, to measure the risk 
we face. Variance and standard deviation measure the dispersion of outcomes around 
the expected value or forecast.

■■ Definition of Variance. The variance of a random variable is the expected value 
(the probability- weighted average) of squared deviations from the random vari-
able’s expected value:

�2 2X E X E X� � � � � ��� ��� �
The two notations for variance are σ2(X) and Var(X).

Variance is a number greater than or equal to 0 because it is the sum of squared 
terms. If variance is 0, there is no dispersion or risk. The outcome is certain, and the 
quantity X is not random at all. Variance greater than 0 indicates dispersion of out-
comes. Increasing variance indicates increasing dispersion, all else equal. Variance of X 
is a quantity in the squared units of X. For example, if the random variable is return in 
percent, variance of return is in units of percent squared. Standard deviation is easier 
to interpret than variance because it is in the same units as the random variable. If the 
random variable is return in percent, standard deviation of return is also in units of 
percent. In the following example, when the variance of returns is stated as a percent 
or amount of money, to conserve space, we may suppress showing the unit squared.

■■ Definition of Standard Deviation. Standard deviation is the positive square 
root of variance.

The best way to become familiar with these concepts is to work examples.

EXAMPLE 11  

BankCorp’s Earnings per Share (4)
In Example 10, you calculated the expected value of BankCorp’s EPS as $2.34, 
which is your forecast. Using the probability distribution of EPS from Exhibit 6, 
you want to measure the dispersion around your forecast. What are the variance 
and standard deviation of BankCorp’s EPS for the current fiscal year?

The order of calculation is always expected value, then variance, then standard 
deviation. Expected value has already been calculated. Following the definition 
of variance above, calculate the deviation of each outcome from the mean or 
expected value, square each deviation, weight (multiply) each squared deviation 
by its probability of occurrence, and then sum these terms.

�2 22 60 2 60 2 45 2 45EPS EPS EPS� � � � � � � ��� �� � � � � � ��� ��P E P E$ . $ . $ . $ . 22

2 22 20 2 20 2 00 2 00

0 1

� � � � � ��� �� � � � � � ��� ��

�

P E P E$ . $ . $ . $ .

.

EPS EPS

55 2 60 2 34 0 45 2 45 2 34

0 24 2 20 2 34 0 16 2 00

2 2

2

. . . . .

. . . . .

�� � � �� �
� �� � � � 22 34

0 01014 0 005445 0 004704 0 018496 0 038785

2.
. . . . .

� �
� � � � �

Standard deviation is the positive square root of 0.038785:
σ(EPS) = 0.0387851/2 = 0.196939, or approximately 0.20.

(8)
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An equation that summarizes your calculation of variance in Example 11 is

�2
1 1

2
2 2

2X P X X E X P X X E X

P X

� � � � � � � ��� �� � � � � � ��� ��

� �             nn n i i
i

n
X E X P X X E X� � � � ��� �� � � � � � ��� ��

�
�2 2

1

where Xi is one of n possible outcomes of the random variable X.

 i. explain the use of conditional expectation in investment applications

In investments, we make use of any relevant information available in making our 
forecasts. When we refine our expectations or forecasts, we are typically making 
adjustments based on new information or events; in these cases, we are using condi-
tional expected values. The expected value of a random variable X given an event 
or scenario S is denoted E(X | S). Suppose the random variable X can take on any one 
of n distinct outcomes X1, X2, …, Xn (these outcomes form a set of mutually exclusive 
and exhaustive events). The expected value of X conditional on S is the first outcome, 
X1, times the probability of the first outcome given S, P(X1 | S), plus the second out-
come, X2, times the probability of the second outcome given S, P(X2 | S), and so forth.

E(X | S) = P(X1 | S)X1 + P(X2 | S)X2 + … + P(Xn | S)Xn  

We will illustrate this equation shortly.
Parallel to the total probability rule for stating unconditional probabilities in terms 

of conditional probabilities, there is a principle for stating (unconditional) expected 
values in terms of conditional expected values. This principle is the total probability 
rule for expected value.

■■ Total Probability Rule for Expected Value.

E(X) = E(X | S)P(S) + E(X | SC)P(SC)  

E(X) = E(X | S1)P(S1) + E(X | S2)P(S2) + … + E(X | Sn)P(Sn)  

where S1, S2, …, Sn are mutually exclusive and exhaustive scenarios or events.

The general case, Equation  12, states that the expected value of X equals the 
expected value of X given Scenario 1, E(X | S1), times the probability of Scenario 1, 
P(S1), plus the expected value of X given Scenario 2, E(X | S2), times the probability 
of Scenario 2, P(S2), and so forth.

To use this principle, we formulate mutually exclusive and exhaustive scenarios that 
are useful for understanding the outcomes of the random variable. This approach was 
employed in developing the probability distribution of BankCorp’s EPS in Examples 
10 and 11, as we now discuss.

j interpret a probability tree and demonstrate its application to investment 
problems

The earnings of BankCorp are interest rate sensitive, benefiting from a declining 
interest rate environment. Suppose there is a 0.60 probability that BankCorp will 
operate in a declining interest rate environment in the current fiscal year and a 0.40 
probability that it will operate in a stable interest rate environment (assessing the chance 
of an increasing interest rate environment as negligible). If a declining interest rate 
environment occurs, the probability that EPS will be $2.60 is estimated at 0.25, and the 
probability that EPS will be $2.45 is estimated at 0.75. Note that 0.60, the probability 
of declining interest rate environment, times 0.25, the probability of $2.60 EPS given 
a declining interest rate environment, equals 0.15, the (unconditional) probability of 

(9)

(10)

(11)

(12)
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$2.60 given in the table in Exhibit 7. The probabilities are consistent. Also, 0.60(0.75) 
= 0.45, the probability of $2.45 EPS given in Exhibit 7. The probability tree diagram 
in Exhibit 8 shows the rest of the analysis.

Exhibit 8   BankCorp’s Forecasted EPS

E(EPS) = $2.34

Prob. of declining
interest rates = 0.60 

Prob. of stable
interest rates = 0.40

EPS = $2.60 with
Prob = 0.150.25

0.75

0.60

0.40

EPS = $2.45 with
Prob = 0.45

EPS = $2.20 with
Prob = 0.24

EPS = $2.00 with
Prob = 0.16

A declining interest rate environment points us to the node of the tree that 
branches off into outcomes of $2.60 and $2.45. We can find expected EPS given a 
declining interest rate environment as follows, using Equation 10:

 E(EPS | declining interest rate environment) = 0.25($2.60) + 0.75($2.45)
 = $2.4875

If interest rates are stable,

 E(EPS | stable interest rate environment) = 0.60($2.20) + 0.40($2.00)
 = $2.12

Once we have the new piece of information that interest rates are stable, for example, 
we revise our original expectation of EPS from $2.34 downward to $2.12. Now using 
the total probability rule for expected value,

E EPS

E EPS | declining interest rate environment P decli(
� �
� �� nning interest rateenvironment

E EPS | stable interest rat

)

� ee environment P stable interest rateenvironment( )� �
So, E(EPS) = $2.4875(0.60) + $2.12(0.40) = $2.3405 or about $2.34.
This amount is identical to the estimate of the expected value of EPS calculated directly 
from the probability distribution in Example  10. Just as our probabilities must be 
consistent, so must our expected values, unconditional and conditional; otherwise our 
investment actions may create profit opportunities for other investors at our expense.

To review, we first developed the factors or scenarios that influence the outcome 
of the event of interest. After assigning probabilities to these scenarios, we formed 
expectations conditioned on the different scenarios. Then we worked backward to 
formulate an expected value as of today. In the problem just worked, EPS was the 
event of interest, and the interest rate environment was the factor influencing EPS.
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We can also calculate the variance of EPS given each scenario:

�2 EPS    |

$ . |

declining interest rate environment

declini
� �
� P 2 60 nng interest rate environment

declining inter

   

EPS  

� �
� �$ . |2 60 E eest rate environment
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� ��� ��
�

2
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declining interest rate enviro

 

EPS    

� �
� �$ . |2 45 E nnment� ��� ��
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�

2

2 20 25 2 60 0 75 2 45. $ . $ . $ . $2.4875 2.4875
0.0004219

Similarly, σ2(EPS | stable interest rate environment) is found to be equal to
= 0.60($2.20 - $2.12)2 + 0.40($2.00 - $2.12)2 = 0.0096

These are conditional variances, the variance of EPS given a declining interest 
rate environment and the variance of EPS given a stable interest rate environment. The 
relationship between unconditional variance and conditional variance is a relatively 
advanced topic. The main points are 1) that variance, like expected value, has a con-
ditional counterpart to the unconditional concept and 2) that we can use conditional 
variance to assess risk given a particular scenario.

EXAMPLE 12  

BankCorp’s Earnings per Share (5)
Continuing with BankCorp, you focus now on BankCorp’s cost structure. One 
model, a simple linear regression model, you are researching for BankCorp’s 
operating costs is

Y a bX � �

where Y  is a forecast of operating costs in millions of dollars and X is the number 
of branch offices. Y  represents the expected value of Y given X, or E(Y | X). You 
interpret the intercept a as fixed costs and b as variable costs. You estimate the 
equation as

Y X � �12 5 0 65. .

BankCorp currently has 66 branch offices, and the equation estimates operating 
costs as 12.5  + 0.65(66) = $55.4  million. You have two scenarios for growth, 
pictured in the tree diagram in Exhibit 9.
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Exhibit 9   BankCorp’s Forecasted Operating Costs

Expected Op.
Costs = ?

High Growth
Probability = 0.80 

Low Growth
Probability = 0.20

Branches = 125
Op. Costs = ?
Prob = ?

Branches = 100
Op. Costs = ?
Prob = ?

Branches = 80
Op. Costs = ?
Prob = ?

Branches = 70
Op. Costs = ?
Prob = ?

0.50

0.50

0.85

0.15

1 Compute the forecasted operating costs given the different levels of 
operating costs, using Y X � �12 5 0 65. . . State the probability of each level 
of the number of branch offices. These are the answers to the questions in 
the terminal boxes of the tree diagram.

2 Compute the expected value of operating costs under the high growth 
scenario. Also calculate the expected value of operating costs under the 
low growth scenario.

3 Answer the question in the initial box of the tree: What are BankCorp’s 
expected operating costs?

Solution to 1:

Using Y  = 12.5 + 0.65X, from top to bottom, we have

Operating Costs Probability

Y  = 12.5 + 0.65(125) = $93.75 million
0.80(0.50) = 0.40

Y  = 12.5 + 0.65(100) = $77.50 million
0.80(0.50) = 0.40

Y  = 12.5 + 0.65(80) = $64.50 million
0.20(0.85) = 0.17

Y  = 12.5 + 0.65(70) = $58.00 million
0.20(0.15) = 0.03

Sum = 1.00

Solution to 2:
Dollar amounts are in millions.

E high growthoperating costs 0.50 $93.75 0.50 $77.50
$8

|� � � � � � � �
� 55.625

E lowgrowthoperating costs 0.85 $64.50 0.15 $58.00
$63

|� � � � � � � �
� ..525
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Solution to 3:
Dollar amounts are in millions.

E E high growth P high growtoperating costs operating costs� � � � �| hh

E lowgrowth P lowgrowth
� �

� � � � �
� �

operating costs

85.625

|

$ .0 80�� � � � �$ . $63.525 81.2050 20

BankCorp’s expected operating costs are $81.205 million.

In this section, we have treated random variables such as EPS as standalone quan-
tities. We have not explored how descriptors such as expected value and variance 
of EPS may be functions of other random variables. Portfolio return is one random 
variable that is clearly a function of other random variables, the random returns on 
the individual securities in the portfolio. To analyze a portfolio’s expected return and 
variance of return, we must understand these quantities are a function of characteristics 
of the individual securities’ returns. Looking at the variance of portfolio return, we 
see that the way individual security returns move together or covary is key. So, next 
we cover portfolio expected return, variance of return, and importantly, covariance 
and correlation.

EXPECTED VALUE, VARIANCE, STANDARD DEVIATION, 
COVARIANCES, AND CORRELATIONS OF PORTFOLIO 
RETURNS

k calculate and interpret the expected value, variance, standard deviation, 
covariances, and correlations of portfolio returns

Modern portfolio theory makes frequent use of the idea that investment opportu-
nities can be evaluated using expected return as a measure of reward and variance 
of return as a measure of risk. In this section, we will develop an understanding of 
portfolio expected return and variance of return, which are functions of the returns 
on the individual portfolio holdings. To begin, the expected return on a portfolio is 
a weighted average of the expected returns on the securities in the portfolio, using 
exactly the same weights. When we have estimated the expected returns on the indi-
vidual securities, we immediately have portfolio expected return.

■■ Calculation of Portfolio Expected Return. Given a portfolio with n securi-
ties, the expected return on the portfolio (E(Rp)) is a weighted average of the 
expected returns (R1 to Rn) on the component securities using their respective 
weights (w1 to wn):

E R E w R w R w R

w E R w E R w E R
p n n

n n

� � � � � �� �
� � � � � � � � � �

1 1 2 2

1 1 2 2





Suppose we have estimated expected returns on assets in the three- asset portfolio 
shown in Exhibit 10.

4

(13)
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Exhibit 10   Weights and Expected Returns

Asset Class Weight Expected Return (%)

S&P 500 0.50 13
US long- term corporate bonds 0.25 6
MSCI EAFE 0.25 15

We calculate the expected return on the portfolio as 11.75%:

E R w E R w E R w E Rp� � � � � � � � � � �
� � � � � � � � �

1 1 2 2 3 3

0 50 13 0 25 6 0 25 15. % . % . % �� 11 75. %

Here we are interested in portfolio variance of return as a measure of investment 
risk. Accordingly, portfolio variance is σ2(Rp) = E{[Rp − E(Rp)]2}, which is variance in 
a forward- looking sense. To implement this definition of portfolio variance, we use 
information about the individual assets in the portfolio, but we also need the concept 
of covariance. To avoid notational clutter, we write ERp for E(Rp).

■■ Definition of Covariance. Given two random variables Ri and Rj, the covariance 
between Ri and Rj is

Cov R R E R ER R ERi j i i j j,� � � �� � �� ��
�

�
�

Alternative notations are σ(Ri,Rj) and σij. Equation 14 states that the covariance 
between two random variables is the probability- weighted average of the cross- 
products of each random variable’s deviation from its own expected value. The 
above measure is the population covariance and is forward- looking. The sample 
covariance between two random variables Ri and Rj, based on a sample of past 
data of size n is

Cov R R R R R R ni j i t i j t j
n

n
, , ,� � � �� � �� � �� �

�
� 1

1

Start with the definition of variance for a three- asset portfolio and see how it 
decomposes into three variance terms and six covariance terms. Dispensing with the 
derivation, the result is Equation 16:

�2 2

1 1 2 2 3 3 1 1 2 2 3 3

R E R ER

E w R w R w R E w R w R w R

p p p� � � �� ��
��

�
��

� � � � � �� ���� ��� �
� � � � � �� �� �

2

1 1 2 2 3 3 1 1 2 2 3 3
2E w R w R w R w ER w ER w ER

using Equatioon 13� �

� � � � � � � � �
� � � �
w R w w R R w w R R

w w Cov R R w
1
2 2

1 1 2 1 2 1 3 1 3

1 2 1 2 2

� Cov Cov, ,

, 22 2
2 2 3 2 3

1 3 1 3 2 3 2 3 3
2

�

�

R w w R R

w w Cov R R w w Cov R R w

� � � � �
� � � � � � �

Cov ,

, , 22
3R� �

(14)

(15)

(16)
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Noting that the order of variables in covariance does not matter, for example, 
Cov(R2,R1) = Cov(R1,R2), and that diagonal variance terms σ2(R1), σ2(R2), and σ2(R3) 
can be expressed as Cov(R1,R1), Cov(R2,R2), and Cov(R3,R3), respectively, the most 

compact way to state Equation 16 is �2 CovR w w R Rp i j
ji

i j� � � � �
��
��

1

3

1

3
, . Moreover, this 

expression generalizes for a portfolio of any size n to

�2 CovR w w R Rp i j
j

n

i

n

i j� � � � �
��
��

11
,

We see from Equation 16 that individual variances of return constitute part, but 
not all, of portfolio variance. The three variances are actually outnumbered by the six 
covariance terms off the diagonal. If there are 20 assets, there are 20 variance terms 
and 20(20) − 20 = 380 off- diagonal covariance terms. A first observation is that as 
the number of holdings increases, covariance becomes increasingly important, all 
else equal.

The covariance terms capture how the co- movements of returns affect portfolio 
variance. From the definition of covariance, we can establish two essential observa-
tions about covariance.

1 We can interpret the sign of covariance as follows:
 Covariance of returns is negative if, when the return on one asset is above its 

expected value, the return on the other asset tends to be below its expected 
value (an average inverse relationship between returns).

 Covariance of returns is 0 if returns on the assets are unrelated.
 Covariance of returns is positive when the returns on both assets tend to be 

on the same side (above or below) their expected values at the same time (an 
average positive relationship between returns).

2 The covariance of a random variable with itself (own covariance) is its own vari-
ance: Cov(R,R) = E{[R − E(R)][R − E(R)]} = E{[R − E(R)]2} = σ2(R).

Exhibit 11 summarizes the inputs for portfolio expected return and variance of return. 
A complete list of the covariances constitutes all the statistical data needed to compute 
portfolio variance of return as shown in the covariance matrix in Panel B.

Exhibit 11   Inputs to Portfolio Expected Return and Variance

A. Inputs to Portfolio Expected Return

Asset A B C

E(RA) E(RB) E(RC)

B. Covariance Matrix: The Inputs to Portfolio Variance of Return

Asset A B C
A Cov(RA,RA) Cov(RA,RB) Cov(RA,RC)
B Cov(RB,RA) Cov(RB,RB) Cov(RB,RC)
C Cov(RC,RA) Cov(RC,RB) Cov(RC,RC)

With three assets, the covariance matrix has 32 = 3 × 3 = 9 entries, but the diagonal 
terms, the variances (bolded in Exhibit 11), are treated separately from the off- diagonal 
terms. So there are 9 − 3  = 6 covariances, excluding variances. But Cov(RB,RA) = 

(17)
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Cov(RA,RB), Cov(RC,RA) = Cov(RA,RC), and Cov(RC,RB) = Cov(RB,RC). The covari-
ance matrix below the diagonal is the mirror image of the covariance matrix above 
the diagonal, so you only need to use one (i.e., either below or above the diagonal). 
As a result, there are only 6/2 = 3 distinct covariance terms to estimate. In general, 
for n securities, there are n(n − 1)/2 distinct covariances and n variances to estimate.

Suppose we have the covariance matrix shown in Exhibit 12. We will be working 
in returns stated as percents, and the table entries are in units of percent squared (%2). 
The terms 38%2 and 400%2 are 0.0038 and 0.0400, respectively, stated as decimals; 
correctly working in percents and decimals leads to identical answers.

Exhibit 12   Covariance Matrix

S&P 500
US Long- Term 

Corporate Bonds
MSCI 
EAFE

S&P 500 400 45 189
US long- term corporate bonds 45 81 38
MSCI EAFE 189 38 441

Taking Equation 16 and grouping variance terms together produces the following:

� � � �2 2 2 2 CovR w R w R w R w w R R

w w
p� � � � � � � � � � � � � �

�

1
2

1 2
2

2 3
2

3 1 2 1 2

1 3

2

2

,

CCov CovR R w w R R1 3 2 3 2 3
2 2

2

0 50 400 0 25 81 0 25

, ,

. . .

� � � � �
� � � � � � � � � � � � �� � �
� � �� �� � � � �� �� �
� � ��

2 441

2 0 50 0 25 45 2 0 50 0 25 189

2 0 25 0 25

. . . .

. . ��� �
� � � � � � �

38
100 5 0625 27 5625 11 25 47 25 4 75 195 875. . . . . .

The variance is 195.875. Standard deviation of return is 195.8751/2 = 14%. To 
summarize, the portfolio has an expected annual return of 11.75% and a standard 
deviation of return of 14%.

Looking at the first three terms in the calculation above, their sum (100 + 5.0625 + 
27.5625) is 132.625, the contribution of the individual variances to portfolio variance. 
If the returns on the three assets were independent, covariances would be 0 and the 
standard deviation of portfolio return would be 132.6251/2 = 11.52% as compared 
to 14% before, so a less risky portfolio. If the covariance terms were negative, then a 
negative number would be added to 132.625, so portfolio variance and risk would be 
even smaller, while expected return would not change. For the same expected port-
folio return, the portfolio has less risk. This risk reduction is a diversification benefit, 
meaning a risk- reduction benefit from holding a portfolio of assets. The diversifica-
tion benefit increases with decreasing covariance. This observation is a key insight 
of modern portfolio theory. This insight is even more intuitively stated when we can 
use the concept of correlation.

■■ Definition of Correlation. The correlation between two random variables, Ri 
and Rj, is defined as ρ(Ri,Rj) = Cov(Ri,Rj)/[σ(Ri)σ(Rj)]. Alternative notations are 
Corr(Ri,Rj) and ρij.

The above definition of correlation is forward- looking because it involves dividing the 
forward- looking covariance by the product of forward- looking standard deviations. 
Frequently, covariance is substituted out using the relationship Cov(Ri,Rj) = ρ(Ri,Rj)
σ(Ri)σ(Rj). Like covariance, the correlation coefficient is a measure of linear association. 

(18)
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However, the division in the definition makes correlation a pure number (without a 
unit of measurement) and places bounds on its largest and smallest possible values, 
which are +1 and –1, respectively.

If two variables have a strong positive linear relation, then their correlation will be 
close to +1. If two variables have a strong negative linear relation, then their correlation 
will be close to –1. If two variables have a weak linear relation, then their correlation 
will be close to 0. Using the above definition, we can state a correlation matrix from 
data in the covariance matrix alone. Exhibit 13 shows the correlation matrix.

Exhibit 13   Correlation Matrix of Returns

S&P 500
US Long- Term 

Corporate Bonds MSCI EAFE

S&P 500 1.00 0.25 0.45
US long- term corporate bonds 0.25 1.00 0.20
MSCI EAFE 0.45 0.20 1.00

For example, the covariance between long- term bonds and MSCI EAFE is 38, from 
Exhibit 12. The standard deviation of long- term bond returns is 811/2 = 9%, that of 
MSCI EAFE returns is 4411/2 = 21%, from diagonal terms in Exhibit 12. The correlation 
ρ(Rlong- term bonds, REAFE) is 38/[(9%)(21%)] = 0.201, rounded to 0.20. The correlation 
of the S&P 500 with itself equals 1: The calculation is its own covariance divided by 
its standard deviation squared.

EXAMPLE 13  

Portfolio Expected Return and Variance of Return with 
Varying Portfolio Weights
Anna Cintara is constructing different portfolios from the following two stocks:

Exhibit 14   Description of Two- Stock Portfolio

Stock 1 Stock 2

Expected return 4% 8%
Standard deviation 6% 15%
Current portfolio weights 0.40 0.60
Correlation between returns 0.30

1 Calculate the covariance between the returns on the two stocks.
2 What is the portfolio expected return and standard deviation if Cintara 

puts 100% of her investment in Stock 1 (w1 = 1.00 and w2 = 0.00)? What is 
the portfolio expected return and standard deviation if Cintara puts 100% 
of her investment in Stock 2 (w1 = 0.00 and w2 = 1.00)?
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3 What are the portfolio expected return and standard deviation using the 
current portfolio weights?

4 Calculate the expected return and standard deviation of the portfolios 
when w1 goes from 0.00 to 1.00 in 0.10 increments (and w2 = 1 – w1). 
Place the results (stock weights, portfolio expected return, and portfolio 
standard deviation) in a table, and then sketch a graph of the results with 
the standard deviation on the horizontal axis and expected return on the 
vertical axis.

Solution to 1:
The correlation between two stock returns is ρ(Ri,Rj) = Cov(Ri,Rj)/[σ(Ri) σ(Rj)], 
so the covariance is Cov(Ri,Rj) = ρ(Ri,Rj) σ(Ri) σ(Rj). For these two stocks, the 
covariance is Cov(R1,R2) = ρ(R1,R2) σ(R1) σ(R2) = 0.30 (6) (15) = 27.

Solution to 2:
If the portfolio is 100% invested in Stock 1, the portfolio has an expected return 
of 4% and a standard deviation of 6%. If the portfolio is 100% invested in Stock 
2, the portfolio has an expected return of 8% and a standard deviation of 15%.

Solution to 3:
For the current 40/60 portfolio, the expected return is

E(Rp) = w1E(R1) + (1 − w1)E(R2) = 0.40(4%) + 0.60(8%) = 6.4%

The portfolio variance and standard deviation are

� � �2
1
2 2

1 2
2 2

2 1 2 1 2
2

2

0 40 36 0

( ) ( ) ( ) ( , )

( . ) ( ) ( .

R w R w R w w R Rp � � �

� �

Cov

660 225 2 0 40 0 60 27
5 76 81 12 94 99 72

2) ( ) ( . )( . )( )
. . .

�
� � � �

�( ) . . %/Rp � �99 72 9 991 2

Solution to 4:
The portfolio expected returns, variances, and standard deviations for the 
different sets of portfolio weights are given in the following table. Three of the 
rows are already computed in the Solutions to 2 and 3, and the other rows are 
computed using the same expected return, variance, and standard deviation 
formulas as in the Solution to 3:

Stock 1 
weight

Stock 2 
weight

Expected 
return (%)

Variance 
(%2)

Standard 
deviation (%)

1.00 0.00 4.00 36.00 6.00
0.90 0.10 4.40 36.27 6.02
0.80 0.20 4.80 40.68 6.38
0.70 0.30 5.20 49.23 7.02
0.60 0.40 5.60 61.92 7.87
0.50 0.50 6.00 78.75 8.87
0.40 0.60 6.40 99.72 9.99
0.30 0.70 6.80 124.83 11.17
0.20 0.80 7.20 154.08 12.41
0.10 0.90 7.60 187.47 13.69
0.00 1.00 8.00 225.00 15.00
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The graph of the expected return and standard deviation is
Expected Return (%)
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33

22

11

00

00 16166622 44 88 14141010 1212

Standard Deviation (%)

COVARIANCE GIVEN A JOINT PROBABILITY 
FUNCTION

 l. calculate and interpret the covariances of portfolio returns using the joint 
probability function

How do we estimate return covariance and correlation? Frequently, we make forecasts 
on the basis of historical covariance or use other methods such as a market model 
regression based on historical return data. We can also calculate covariance using 
the joint probability function of the random variables, if that can be estimated. The 
joint probability function of two random variables X and Y, denoted P(X,Y), gives the 
probability of joint occurrences of values of X and Y. For example, P(X=3, Y=2), is the 
probability that X equals 3 and Y equals 2.

Suppose that the joint probability function of the returns on BankCorp stock (RA) 
and the returns on NewBank stock (RB) has the simple structure given in Exhibit 15.

Exhibit 15   Joint Probability Function of BankCorp and NewBank Returns 
(Entries Are Joint Probabilities)

RB = 20% RB = 16% RB = 10%

RA = 25% 0.20 0 0
RA = 12% 0 0.50 0
RA = 10% 0 0 0.30

The expected return on BankCorp stock is 0.20(25%) + 0.50(12%) + 0.30(10%) = 
14%. The expected return on NewBank stock is 0.20(20%) + 0.50(16%) + 0.30(10%) = 
15%. The joint probability function above might reflect an analysis based on whether 
banking industry conditions are good, average, or poor. Exhibit 16 presents the cal-
culation of covariance.

5
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Exhibit 16   Covariance Calculations

Banking 
Industry 
Condition

Deviations 
BankCorp

Deviations 
NewBank

Product of 
Deviations

Probability of 
Condition

Probability- Weighted 
Product

Good 25−14 20−15 55 0.20 11
Average 12−14 16−15 −2 0.50 −1
Poor 10−14 10−15 20 0.30 6

Cov(RA,RB) = 16

Note: Expected return for BankCorp is 14% and for NewBank, 15%.

The first and second columns of numbers show, respectively, the deviations of BankCorp 
and NewBank returns from their mean or expected value. The next column shows the 
product of the deviations. For example, for good industry conditions, (25 − 14)(20 − 15) 
= 11(5) = 55. Then, 55 is multiplied or weighted by 0.20, the probability that banking 
industry conditions are good: 55(0.20) = 11. The calculations for average and poor 
banking conditions follow the same pattern. Summing up these probability- weighted 
products, we find Cov(RA,RB) = 16.

A formula for computing the covariance between random variables RA and RB is

Cov R R P R R R ER R ERA B A i B j
ji

A i A B j B, ,, , , ,� � � � � �� � �� ���

The formula tells us to sum all possible deviation cross- products weighted by the 
appropriate joint probability.

Next, we take note of the fact that when two random variables are independent, 
their joint probability function simplifies.

■■ Definition of Independence for Random Variables. Two random variables X and 
Y are independent if and only if P(X,Y) = P(X)P(Y).

For example, given independence, P(3,2) = P(3)P(2). We multiply the individual 
probabilities to get the joint probabilities. Independence is a stronger property than 
uncorrelatedness because correlation addresses only linear relationships. The follow-
ing condition holds for independent random variables and, therefore, also holds for 
uncorrelated random variables.

■■ Multiplication Rule for Expected Value of the Product of Uncorrelated 
Random Variables. The expected value of the product of uncorrelated random 
variables is the product of their expected values.

E(XY) = E(X)E(Y) if X and Y are uncorrelated.

Many financial variables, such as revenue (price times quantity), are the product of 
random quantities. When applicable, the above rule simplifies calculating expected 
value of a product of random variables.

EXAMPLE 14  

Covariances and Correlations of Security Returns
Isabel Vasquez is reviewing the correlations between four of the asset classes in 
her company portfolio. In Exhibit 17, she plots 24 recent monthly returns for 
large- cap US stocks versus for large- cap world ex- US stocks (Panel 1) and the 
24 monthly returns for intermediate- term corporate bonds versus long- term 

(19)
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corporate bonds (Panel 2). Vasquez presents the returns, variances, and covari-
ances in decimal form instead of percentage form. Note the different ranges of 
their vertical axes (Return %).

Exhibit 17   Monthly Returns for Four Asset Classes 

A. Equity Monthly Returns

0.150.15

0.100.10

00

0.050.05

–0.05–0.05

–0.10–0.10

–0.15–0.15

0.150.15

0.100.10

00

0.050.05

–0.05–0.05

–0.10–0.10

–0.15–0.15

11 1515 1717 1919 2121 232333 55 77 99 1111 1313

Large-Cap US

Large-Cap World Ex US

B. Corporate Bond Monthly Returns

11 1515 1717 1919 2121 232333 55 77 99 1111 1313

Intermediate Corp Bonds

Long-Term Corp Bonds

Return (%)

Return (%)

Selected data for the four asset classes are shown in Exhibit 18.

Exhibit 18   Selected Data for Four Asset Classes

Asset Classes
Large- 
Cap US 

Equities

World 
(ex US) 

Equities

Intermediate 
Corp Bonds

Long- Term 
Corp Bonds

Variance 0.001736 0.001488 0.000174 0.000699
Standard deviation 0.041668 0.038571 0.013180 0.026433
Covariance 0.001349 0.000318
Correlation 0.87553 0.95133

Vasquez noted, as shown in Exhibit 18, that although the two equity classes 
had much greater variances and covariance than the two bond classes, the cor-
relation between the two equity classes was lower than the correlation between 
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the two bond classes. She also noted that although long- term bonds were more 
volatile (higher variance) than intermediate- term bonds, long- and intermediate- 
term bond returns still had a high correlation.

BAYES' FORMULA

m calculate and interpret an updated probability using Bayes’ formula

A topic that is often useful in solving investment problems is Bayes’ formula: what 
probability theory has to say about learning from experience.

6.1 Bayes’ Formula
When we make decisions involving investments, we often start with viewpoints based 
on our experience and knowledge. These viewpoints may be changed or confirmed by 
new knowledge and observations. Bayes’ formula is a rational method for adjusting 
our viewpoints as we confront new information. Bayes’ formula and related concepts 
have been applied in many business and investment decision- making contexts.

Bayes’ formula makes use of Equation 6, the total probability rule. To review, that 
rule expressed the probability of an event as a weighted average of the probabilities of 
the event, given a set of scenarios. Bayes’ formula works in reverse; more precisely, it 
reverses the “given that” information. Bayes’ formula uses the occurrence of the event 
to infer the probability of the scenario generating it. For that reason, Bayes’ formula 
is sometimes called an inverse probability. In many applications, including those 
illustrating its use in this section, an individual is updating his/her beliefs concerning 
the causes that may have produced a new observation.

■■ Bayes’ Formula. Given a set of prior probabilities for an event of interest, if you 
receive new information, the rule for updating your probability of the event is

Updated probability of event given the new information

= Proobability of the new information given event
Unconditional  probability of the new information

Prior probability of × eevent

In probability notation, this formula can be written concisely as

P
P

P
PEvent  Information

Information  Event
Information

� � � � �
� �

EEvent� �

Consider the following example using frequencies—which may be more straight-
forward initially than probabilities—for illustrating and understanding Bayes’ formula. 
Assume a hypothetical large- cap stock index has 500 member firms, of which 100 are 
technology firms, and 60 of these had returns of > 10%, and 40 had returns of ≤ 10%. 
Of the 400 non- technology firms in the index, 100 had returns of > 10%, and 300 had 
returns of ≤ 10%. The tree map in Exhibit 19 is useful for visualizing this example, 
which is summarized in the table in Exhibit 20.

6

(20)
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Exhibit 19   Tree Map for Visualizing Bayes’ Formula Using Frequencies

P (Tech | R > 10%) = 60/(60+100)

All Firms

Non-Tech FirmsTech Firms

Return > 10 %

Return > 10 %

Return ≤ 10%

Return ≤ 10%

100 400

500

4060 300100

Exhibit 20   Summary of Returns for Tech and Non- Tech Firms in 
Hypothetical Large- Cap Equity Index

Rate of Return (R)

Type of Firm in Stock Index

Non- Tech Tech Total

R > 10% 100 60 160
R ≤ 10% 300 40 340
Total 400 100 500

What is the probability a firm is a tech firm given that it has a return of > 10% or 
P(tech | R > 10%)? Looking at the frequencies in the tree map and in the table, we 
can see many empirical probabilities, such as the following:

■■ P(tech) = 100 / 500 = 0.20,
■■ P(non- tech) = 400 / 500 = 0.80,
■■ P(R > 10% | tech) = 60 / 100 = 0.60,
■■ P(R > 10% | non- tech) = 100 / 400 = 0.25,
■■ P(R > 10%) = 160 / 500 = 0.32, and, finally,
■■ P(tech | R > 10%) = 60/ 160 = 0.375. This probability is the answer to our initial 

question.

Without looking at frequencies, let us use Bayes’ formula to find the probability 
that a firm has a return of > 10% and then the probability that a firm with a return of 
> 10% is a tech firm, P(tech | R > 10%). First,

P(R > 10%) = P(R > 10% | tech)×P(tech) + P(R > 10% | non- tech)×P(non- tech)
= 0.60×0.20 + 0.25×0.80 = 0.32.
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Now we can implement the Bayes’ formula answer to our question:

P tech R P R tech P tech
P R

( | %) ( % | ) ( )
( %)

. .
.

� �
� �

�
�

�
�10 10

10
0 60 0 20

0 32
00 375.

The probability that a firm with a return of > 10% is a tech firm is 0.375, which is 
impressive because the probability that a firm is a tech firm (from the whole sample) 
is only 0.20. In sum, it can be readily seen from the tree map and the underlying 
frequency data (Exhibits 19 and 20, respectively) or from the probabilities in Bayes’ 
formula that there are 160 firms with R > 10%, and 60 of them are tech firms, so P(tech 
| R > 10%) = 60/160 = .375.

Users of Bayesian statistics do not consider probabilities (or likelihoods) to be 
known with certainty but that these should be subject to modification whenever new 
information becomes available. Our beliefs or probabilities are continually updated 
as new information arrives over time.

To further illustrate Bayes’ formula, we work through an investment example that 
can be adapted to any actual problem. Suppose you are an investor in the stock of 
DriveMed, Inc. Positive earnings surprises relative to consensus EPS estimates often 
result in positive stock returns, and negative surprises often have the opposite effect. 
DriveMed is preparing to release last quarter’s EPS result, and you are interested in 
which of these three events happened: last quarter’s EPS exceeded the consensus EPS 
estimate, last quarter’s EPS exactly met the consensus EPS estimate, or last quarter’s 
EPS fell short of the consensus EPS estimate. This list of the alternatives is mutually 
exclusive and exhaustive.

On the basis of your own research, you write down the following prior probabil-
ities (or priors, for short) concerning these three events:

■■ P(EPS exceeded consensus) = 0.45
■■ P(EPS met consensus) = 0.30
■■ P(EPS fell short of consensus) = 0.25

These probabilities are “prior” in the sense that they reflect only what you know now, 
before the arrival of any new information.

The next day, DriveMed announces that it is expanding factory capacity in Singapore 
and Ireland to meet increased sales demand. You assess this new information. The 
decision to expand capacity relates not only to current demand but probably also to 
the prior quarter’s sales demand. You know that sales demand is positively related to 
EPS. So now it appears more likely that last quarter’s EPS will exceed the consensus.

The question you have is, “In light of the new information, what is the updated 
probability that the prior quarter’s EPS exceeded the consensus estimate?”

Bayes’ formula provides a rational method for accomplishing this updating. We 
can abbreviate the new information as DriveMed expands. The first step in applying 
Bayes’ formula is to calculate the probability of the new information (here: DriveMed 
expands), given a list of events or scenarios that may have generated it. The list of 
events should cover all possibilities, as it does here. Formulating these conditional 
probabilities is the key step in the updating process. Suppose your view, based on 
research of DriveMed and its industry, is

P(DriveMed expands | EPS exceeded consensus) = 0.75
P(DriveMed expands | EPS met consensus) = 0.20
P(DriveMed expands | EPS fell short of consensus) = 0.05

Conditional probabilities of an observation (here: DriveMed expands) are sometimes 
referred to as likelihoods. Again, likelihoods are required for updating the probability.
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Next, you combine these conditional probabilities or likelihoods with your prior 
probabilities to get the unconditional probability for DriveMed expanding, P(DriveMed 
expands), as follows:

P

P EPS exceeded consens

DriveMed expands

DriveMed expands |

 

   
� �

� uus

P EPS exceeded consensus

P EPS met

� �
� � �

�

  

   DriveMed expands | cconsensus

P EPS met consensus

P EPS fe

� �
� � �

�

  

  DriveMed expands | lll short of consensus

P EPS fell short of consensus

   

    
� �
� � �

� 0.775 0 45 0 20 0 30 0 05 0 25 0 41 41. . . . . . , %� � � � � � � � �  or 

This is Equation  6, the total probability rule, in action. Now you can answer your 
question by applying Bayes’ formula:

P EPS exceeded consensus

P

   

 

| DriveMed expands

DriveMed expan
� �

�
dds |

DriveMed expands
EPS exceeded consensus

P
P EPS exceed

  
 

 
� �

� �
eed consensus 

1.829268 0.45 0.823171

� �

� � �� � � � � �0 75 0 41 0 45. . .

Prior to DriveMed’s announcement, you thought the probability that DriveMed would 
beat consensus expectations was 45%. On the basis of your interpretation of the 
announcement, you update that probability to 82.3%. This updated probability is called 
your posterior probability because it reflects or comes after the new information.

The Bayes’ calculation takes the prior probability, which was 45%, and multiplies 
it by a ratio—the first term on the right- hand side of the equal sign. The denominator 
of the ratio is the probability that DriveMed expands, as you view it without consider-
ing (conditioning on) anything else. Therefore, this probability is unconditional. The 
numerator is the probability that DriveMed expands, if last quarter’s EPS actually 
exceeded the consensus estimate. This last probability is larger than unconditional 
probability in the denominator, so the ratio (1.83 roughly) is greater than 1. As a result, 
your updated or posterior probability is larger than your prior probability. Thus, the 
ratio reflects the impact of the new information on your prior beliefs.

EXAMPLE 15  

Inferring Whether DriveMed’s EPS Met Consensus EPS
You are still an investor in DriveMed stock. To review the givens, your prior 
probabilities are P(EPS exceeded consensus) = 0.45, P(EPS met consensus) = 0.30, 
and P(EPS fell short of consensus) = 0.25. You also have the following conditional 
probabilities:

P(DriveMed expands | EPS exceeded consensus) = 0.75
P(DriveMed expands | EPS met consensus) = 0.20
P(DriveMed expands | EPS fell short of consensus) = 0.05

Recall that you updated your probability that last quarter’s EPS exceeded the 
consensus estimate from 45% to 82.3% after DriveMed announced it would 
expand. Now you want to update your other priors.

1 Update your prior probability that DriveMed’s EPS met consensus.
2 Update your prior probability that DriveMed’s EPS fell short of consensus.
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3 Show that the three updated probabilities sum to 1. (Carry each probabil-
ity to four decimal places.)

4 Suppose, because of lack of prior beliefs about whether DriveMed would 
meet consensus, you updated on the basis of prior probabilities that all 
three possibilities were equally likely: P(EPS exceeded consensus) = P(EPS 
met consensus) = P(EPS fell short of consensus) = 1/3.

What is your estimate of the probability P(EPS exceeded consensus | DriveMed 
expands)?

Solution to 1:
The probability is P(EPS met consensus | DriveMed expands) =

P
P

P
DriveMed expands EPS met consensus

DriveMed expands
E

   
 

|� �
� �

PPS met consensus  � �

The probability P(DriveMed expands) is found by taking each of the three condi-
tional probabilities in the statement of the problem, such as P(DriveMed expands 
| EPS exceeded consensus); multiplying each one by the prior probability of the 
conditioning event, such as P(EPS exceeded consensus); then adding the three 
products. The calculation is unchanged from the problem in the text above: 
P(DriveMed expands) = 0.75(0.45) + 0.20(0.30) + 0.05(0.25) = 0.41, or 41%. The 
other probabilities needed, P(DriveMed expands | EPS met consensus) = 0.20 
and P(EPS met consensus) = 0.30, are givens. So

P(EPS met consensus | DriveMed expands)
= [P(DriveMed expands | EPS met consensus)/P(DriveMed expands)]P(EPS 
met consensus)
= (0.20/0.41)(0.30) = 0.487805(0.30) = 0.146341

After taking account of the announcement on expansion, your updated proba-
bility that last quarter’s EPS for DriveMed just met consensus is 14.6% compared 
with your prior probability of 30%.

Solution to 2:
P(DriveMed expands) was already calculated as 41%. Recall that P(DriveMed 
expands | EPS fell short of consensus) = 0.05 and P(EPS fell short of consensus) 
= 0.25 are givens.

P EPS fell short of consensus DriveMed expands

P DriveMed

     

 

|� �
� eexpands EPS fell short of consensus

P DriveMed expands

| /    

 

� ���

�� ��� � �
� � �� � �

P EPS fell short of consensus    

0 05 0 41 0 25 0 12. / . . . 11951 0 25 0 030488. .� � �
As a result of the announcement, you have revised your probability that 
DriveMed’s EPS fell short of consensus from 25% (your prior probability) to 3%.

Solution to 3:
The sum of the three updated probabilities is

P EPS exceeded consensus P EPS met consen     | DriveMed expands� � � ssus

P EPS fell short of consensus

|

|
�

� �DriveMed expands Drive     MMed expands 
0.8232 0.1463 0.0305 1.0000

� �
� � � �

The three events (EPS exceeded consensus, EPS met consensus, EPS fell short of 
consensus) are mutually exclusive and exhaustive: One of these events or state-
ments must be true, so the conditional probabilities must sum to 1. Whether 
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we are talking about conditional or unconditional probabilities, whenever we 
have a complete set of distinct possible events or outcomes, the probabilities 
must sum to 1. This calculation serves to check your work.

Solution to 4:
Using the probabilities given in the question,

P

P EPS exceeded consens

DriveMed expands

DriveMed expands

 

   
� �
� | uus

P EPS exceeded consensus P

EPS met

� �
� � � �   

  

DriveMed expands |

cconsensus P EPS met consensus P

EPS fel
� � � � �   

 

DriveMed expands |

ll short of consensus P EPS fell short of consensus       � � �
� 0 75 1. 33 0 20 1 3 0 05 1 3 1 3� � � � � � � � �. .

Not surprisingly, the probability of DriveMed expanding is 1/3 because the 
decision maker has no prior beliefs or views regarding how well EPS performed 
relative to the consensus estimate.

Now we can use Bayes’ formula to find P(EPS exceeded consensus | DriveMed 
expands) = [P(DriveMed expands | EPS exceeded consensus)/P(DriveMed 
expands)] P(EPS exceeded consensus) = [(0.75/(1/3)](1/3) = 0.75 or 75%. This 
probability is identical to your estimate of P(DriveMed expands | EPS exceeded 
consensus).

When the prior probabilities are equal, the probability of information given an 
event equals the probability of the event given the information. When a decision 
maker has equal prior probabilities (called diffuse priors), the probability of an 
event is determined by the information.

Example 16 shows how Bayes’ formula is used in credit granting where the prob-
ability of payment given credit information is higher than the probability of payment 
without the information.

EXAMPLE 16  

Bayes’ Formula and the Probability of Payment
Jake Bronson is predicting the probability that consumer finance applicants 
granted credit will repay in a timely manner (i.e., their accounts will not become 
“past due”). Using Bayes’ formula, he has structured the problem as

P
P

P
PEvent  Information

Information  Event
Information

� � � � �
� �

EEvent� �

where the event (A) is “timely repayment” and the information (B) is having a 
“good credit report.”

Bronson estimates that the unconditional probability of receiving timely 
payment, P(A), is 0.90 and that the unconditional probability of having a good 
credit report, P(B), is 0.80. The probability of having a good credit report given 
that borrowers paid on time, P(B | A), is 0.85.

What is the probability that applicants with good credit reports will repay 
in a timely manner?

A 0.720
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B 0.944
C 0.956

Solution:
The correct answer is C. The probability of timely repayment given a good credit 
report, P(A | B), is

P A B P B A
P B

P A( | ) ( | )
( )

( ) .
.

. .� � � �
0 85
0 80

0 90 0 956

PRINCIPLES OF COUNTING

n identify the most appropriate method to solve a particular counting 
problem and analyze counting problems using factorial, combination, and 
permutation concepts

The first step in addressing a question often involves determining the different logical 
possibilities. We may also want to know the number of ways that each of these possi-
bilities can happen. In the back of our mind is often a question about probability. How 
likely is it that I will observe this particular possibility? Records of success and failure 
are an example. For instance, the counting methods presented in this section have 
been used to evaluate a market timer’s record. We can also use the methods in this 
section to calculate what we earlier called a priori probabilities. When we can assume 
that the possible outcomes of a random variable are equally likely, the probability of 
an event equals the number of possible outcomes favorable for the event divided by 
the total number of outcomes.

In counting, enumeration (counting the outcomes one by one) is of course the 
most basic resource. What we discuss in this section are shortcuts and principles. 
Without these shortcuts and principles, counting the total number of outcomes can 
be very difficult and prone to error. The first and basic principle of counting is the 
multiplication rule.

■■ Multiplication Rule for Counting. If one task can be done in n1 ways, and a 
second task, given the first, can be done in n2 ways, and a third task, given the 
first two tasks, can be done in n3 ways, and so on for k tasks, then the number 
of ways the k tasks can be done is (n1)(n2)(n3) … (nk).

Exhibit 21 illustrates the multiplication rule where, for example, we have three 
steps in an investment decision process. In the first step, stocks are classified two ways, 
as domestic or foreign (represented by dark- and light- shaded circles, respectively). 
In the second step, stocks are assigned to one of four industries in our investment 
universe: consumer, energy, financial, or technology (represented by four circles with 
progressively darker shades, respectively). In the third step, stocks are classified three 
ways by size: small- cap, mid- cap, and large- cap (represented by light-, medium-, and 
dark- shaded circles, respectively). Because the first step can be done in two ways, the 
second in four ways, and the third in three ways, using the multiplication rule, we can 
carry out the three steps in (2)(4)(3) = 24 different ways.

7
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Exhibit 21   Investment Decision Process Using Multiplication Rule: n1 = 2, n2 
= 4, n3 = 3

2nd Step

1st Step

3rd Step

Step 1: Domestic Step 1: Foreign

Step 2: FinancialStep 2: EnergyStep 2: Consumer Step 2: Technology

Step 3: Mid-CapStep 3: Small-Cap Step 3: Large-Cap

Another illustration is the assignment of members of a group to an equal number 
of positions. For example, suppose you want to assign three security analysts to cover 
three different industries. In how many ways can the assignments be made? The first 
analyst can be assigned in three different ways. Then two industries remain. The sec-
ond analyst can be assigned in two different ways. Then one industry remains. The 
third and last analyst can be assigned in only one way. The total number of different 
assignments equals (3)(2)(1) = 6. The compact notation for the multiplication we have 
just performed is 3! (read: 3 factorial). If we had n analysts, the number of ways we 
could assign them to n tasks would be

n! = n(n – 1)(n – 2)(n – 3)…1

or n factorial. (By convention, 0! = 1.) To review, in this application, we repeatedly 
carry out an operation (here, job assignment) until we use up all members of a group 
(here, three analysts). With n members in the group, the multiplication formula 
reduces to n factorial.

The next type of counting problem can be called labeling problems.1 We want to 
give each object in a group a label, to place it in a category. The following example 
illustrates this type of problem.

A mutual fund guide ranked 18 bond mutual funds by total returns for the last 
year. The guide also assigned each fund one of five risk labels: high risk (four funds), 
above- average risk (four funds), average risk (three funds), below- average risk (four 
funds), and low risk (three funds); as 4 + 4 + 3 + 4 + 3 = 18, all the funds are accounted 
for. How many different ways can we take 18 mutual funds and label 4 of them high 
risk, 4 above- average risk, 3 average risk, 4 below- average risk, and 3 low risk, so that 
each fund is labeled?

The answer is close to 13 billion. We can label any of 18 funds high risk (the first 
slot), then any of 17 remaining funds, then any of 16 remaining funds, then any of 
15 remaining funds (now we have 4 funds in the high risk group); then we can label 
any of 14 remaining funds above- average risk, then any of 13 remaining funds, and 
so forth. There are 18! possible sequences. However, order of assignment within a 
category does not matter. For example, whether a fund occupies the first or third slot 

1 This discussion follows Kemeny, Schleifer, Snell, and Thompson (1972) in terminology and approach.
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of the four funds labeled high risk, the fund has the same label (high risk). Thus, there 
are 4! ways to assign a given group of four funds to the four high risk slots. Making the 
same argument for the other categories, in total there are (4!)(4!)(3!)(4!)(3!) equivalent 
sequences. To eliminate such redundancies from the 18! total, we divide 18! by (4!)(4!)
(3!)(4!)(3!). We have 18!/[(4!)(4!)(3!)(4!)(3!)] = 18!/[(24)(24)(6)(24)(6)] = 12,864,852,000. 
This procedure generalizes as follows.

■■ Multinomial Formula (General Formula for Labeling Problems). The number 
of ways that n objects can be labeled with k different labels, with n1 of the first 
type, n2 of the second type, and so on, with n1 + n2 + … + nk = n, is given by

n
n n nk

!
! ! !1 2 

The multinomial formula with two different labels (k = 2) is especially important. This 
special case is called the combination formula. A combination is a listing in which 
the order of the listed items does not matter. We state the combination formula in a 
traditional way, but no new concepts are involved. Using the notation in the formula 
below, the number of objects with the first label is r = n1 and the number with the 
second label is n − r = n2 (there are just two categories, so n1 + n2 = n). Here is the 
formula:

■■ Combination Formula (Binomial Formula). The number of ways that we can 
choose r objects from a total of n objects, when the order in which the r objects 
are listed does not matter, is

n rC
n
r

n
n r r

�
�

�
�
�

�
� � �� �

!
! !

Here nCr and 
n
r
�

�
�
�

�
�  are shorthand notations for n!/(n − r)!r! (read: n choose r, or n 

combination r).
If we label the r objects as belongs to the group and the remaining objects as does 

not belong to the group, whatever the group of interest, the combination formula tells 
us how many ways we can select a group of size r. We can illustrate this formula with 
the binomial option pricing model. (The binomial pricing model is covered later in 
the CFA curriculum. The only intuition we are concerned with here is that a number 
of different pricing paths can end up with the same final stock price.) This model 
describes the movement of the underlying asset as a series of moves, price up (U) 
or price down (D). For example, two sequences of five moves containing three up 
moves, such as UUUDD and UDUUD, result in the same final stock price. At least 
for an option with a payoff dependent on final stock price, the number but not the 
order of up moves in a sequence matters. How many sequences of five moves belong 
to the group with three up moves? The answer is 10, calculated using the combination 
formula (“5 choose 3”):

5C3 = 5!/[(5 – 3)!3!]
= [(5)(4)(3)(2)(1)]/[(2)(1)(3)(2)(1)] = 120/12 = 10 ways

A useful fact can be illustrated as follows: 5C3 = 5!/(2!3!) equals 5C2 = 5!/(3!2!), as 3 + 
2 = 5; 5C4 = 5!/(1!4!) equals 5C1 = 5!/(4!1!), as 4 + 1 = 5. This symmetrical relationship 
can save work when we need to calculate many possible combinations.

Suppose jurors want to select three companies out of a group of five to receive the 
first-, second-, and third- place awards for the best annual report. In how many ways 
can the jurors make the three awards? Order does matter if we want to distinguish 
among the three awards (the rank within the group of three); clearly the question 

(21)

(22)
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makes order important. On the other hand, if the question were “In how many ways 
can the jurors choose three winners, without regard to place of finish?” we would use 
the combination formula.

To address the first question above, we need to count ordered listings such as 
first place, New Company; second place, Fir Company; third place, Well Company. An 
ordered listing is known as a permutation, and the formula that counts the number 
of permutations is known as the permutation formula. A more formal definition states 
that a permutation is an ordered subset of n distinct objects.

■■ Permutation Formula. The number of ways that we can choose r objects from 
a total of n objects, when the order in which the r objects are listed does matter, 
is

n rP n
n r

�
�� �
!

!

So the jurors have 5P3 = 5!/(5 − 3)! = [(5)(4)(3)(2)(1)]/[(2)(1)] = 120/2 = 60 ways in 
which they can make their awards. To see why this formula works, note that [(5)(4)
(3)(2)(1)]/[(2)(1)] reduces to (5)(4)(3), after cancellation of terms. This calculation 
counts the number of ways to fill three slots choosing from a group of five compa-
nies, according to the multiplication rule of counting. This number is naturally larger 
than it would be if order did not matter (compare 60 to the value of 10 for “5 choose 
3” that we calculated above). For example, first place, Well Company; second place, 
Fir Company; third place, New Company contains the same three companies as first 
place, New Company; second place, Fir Company; third place, Well Company. If we 
were concerned only with award winners (without regard to place of finish), the two 
listings would count as one combination. But when we are concerned with the order 
of finish, the listings count as two permutations.

EXAMPLE 17  

Permutations and Combinations for Two Out of Four 
Outcomes
There are four balls numbered 1, 2, 3, and 4 in a basket. You are running a 
contest in which two of the four balls are selected at random from the basket. 
To win, a player must have correctly chosen the numbers of the two randomly 
selected balls. Suppose the winning numbers are numbers 1 and 3. If the player 
must choose the balls in the same order in which they are drawn, she wins if 
she chose 1 first and 3 second. On the other hand, if order is not important, the 
player wins if the balls drawn are 1 and then 3 or if the balls drawn are 3 and 
then 1. The number of possible outcomes for permutations and combinations of 
choosing 2 out of 4 items is illustrated in Exhibit 22. If order is not important, 
for choosing 2 out of 4 items, the winner wins twice as often.

(23)
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Exhibit 22   Permutations and Combinations for Choosing 2 out of 4 
Items

Permutations: Order matters Combinations: Order does not matter

List of all possible outcomes: 
(1 2) (2 1) (3 1) (4 1) 
(1 3) (2 3) (3 2) (4 2) 
(1 4) (2 4) (3 4) (4 3)

List of all possible outcomes: 
(1 2) (2 3) (3 4) 
(1 3) (2 4) 
(1 4)

Number of permutations: 

n rP
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n r
�

�

!
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2 1
12P �
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Number of combinations: 
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n

n r r
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4 2
4

4 2 2
4 3 2 1
2 1 2 1

6C �
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� � �

� � �
�
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If order is important, the number of permutations (possible outcomes) is 
much larger than the number of combinations when order is not important.

EXAMPLE 18  

Reorganizing the Analyst Team Assignments
Gehr- Flint Investors classifies the stocks in its investment universe into 11 
industries and is assigning each research analyst one or two industries. Five of 
the industries have been assigned, and you are asked to cover two industries 
from the remaining six.

How many possible pairs of industries remain?

A 12
B 15
C 36

Solution:
B is correct. The number of combinations of selecting two industries out of six 
is equal to

n rC n
r

n
n r r

� �
��
�
��
�

�
� �

!
( )! !

!
! !
6

4 2
15

The number of possible combinations for picking two industries out of six 
is 15.
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EXAMPLE 19  

Australian Powerball Lottery
To win the Australian Powerball jackpot, you must match the numbers of seven 
balls pulled from a basket (the balls are numbered 1 through 35) plus the num-
ber of the Powerball (numbered 1 through 20). The order in which the seven 
balls are drawn is not important. The number of combinations of matching 7 
out of 35 balls is

n rC n
r

n
n r r

� �
��
�
��
�

�
� �

!
( )! !

!
! !

, ,35
28 7

6 724 520

The number of combinations for picking the Powerball, 1 out of 20, is

n rC n
r

n
n r r

� �
��
�
��
�

�
� �

!
( )! !

!
! !

20
19 1

20

The number of ways to pick the seven balls plus the Powerball is

35 7 20 1 6 724 520 20 134 490 400C C� � � �, , , ,

Your probability of winning the Australian Powerball with one ticket is 1 in 
134,490,400.

Exhibit 23 is a flow chart that may help you apply the counting methods we have 
presented in this section.
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Exhibit 23   Summary of Counting Methods

 

YES

NO1.  Does the task have a finite number
of possible outcomes? If yes, then you
may be able to use a tool in this section.  

NO

YES

NO

YES

NO

YES

NO

YES

NO

2.  Do I want to assign every member of
a group of size n to one of n slots (or 
tasks)? If no, then proceed to next 
question.

3.  Do I want to count the number of 
ways to apply one of three or more 
labels to each member of a group? If 
no, then proceed to next question.

4.  Do I want to count the number of 
ways I can choose r objects from a 
total of n, when the order in which I list 
the r objects does not matter? If no, 
then proceed to next question.

6.  Can multiplication rule of counting — 
task 1 done n1 ways, task 2 (given 1st) 
done n2 ways, task 3 (given first two) 
done n3 ways, …, number of ways k tasks 
can be done = (n1)(n2)(n3) … (nk) — be used? 

5.  Do I want to count the number of 
ways I can choose r objects from a total 
of n, when the order in which I list the r 
objects is important? If no, then 
proceed to next question.

If no, then you may need to 
count the possibilities one 
by one or use more advanced
techniques than presented here. 

n! = n(n – 1)(n – 2)(n – 3)…1 

Use permutations formula: 

Use combinations formula:

Use multinomial formula:

Use n factorial formula:

STOP.  The number of outcomes 
is infinite, and the tools in this 
section do apply.

n1!n2!...nk!

n!

nCr = = ( )n

r (n – r)!r!

n!

nPr = 
(n – r)!

n!

SUMMARY
In this reading, we have discussed the essential concepts and tools of probability. 
We have applied probability, expected value, and variance to a range of investment 
problems.

■■ A random variable is a quantity whose outcome is uncertain.
■■ Probability is a number between 0 and 1 that describes the chance that a stated 

event will occur.
■■ An event is a specified set of outcomes of a random variable.
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■■ Mutually exclusive events can occur only one at a time. Exhaustive events cover 
or contain all possible outcomes.

■■ The two defining properties of a probability are, first, that 0 ≤ P(E) ≤ 1 (where 
P(E) denotes the probability of an event E) and, second, that the sum of the 
probabilities of any set of mutually exclusive and exhaustive events equals 1.

■■ A probability estimated from data as a relative frequency of occurrence is an 
empirical probability. A probability drawing on personal or subjective judgment 
is a subjective probability. A probability obtained based on logical analysis is an 
a priori probability.

■■ A probability of an event E, P(E), can be stated as odds for E = P(E)/[1 − P(E)] 
or odds against E = [1 − P(E)]/P(E).

■■ Probabilities that are inconsistent create profit opportunities, according to the 
Dutch Book Theorem.

■■ A probability of an event not conditioned on another event is an uncondi-
tional probability. The unconditional probability of an event A is denoted P(A). 
Unconditional probabilities are also called marginal probabilities.

■■ A probability of an event given (conditioned on) another event is a conditional 
probability. The probability of an event A given an event B is denoted P(A | B), 
and P(A | B) = P(AB)/P(B), P(B) ≠ 0.

■■ The probability of both A and B occurring is the joint probability of A and B, 
denoted P(AB).

■■ The multiplication rule for probabilities is P(AB) = P(A | B)P(B).
■■ The probability that A or B occurs, or both occur, is denoted by P(A or B).
■■ The addition rule for probabilities is P(A or B) = P(A) + P(B) − P(AB).
■■ When events are independent, the occurrence of one event does not affect 

the probability of occurrence of the other event. Otherwise, the events are 
dependent.

■■ The multiplication rule for independent events states that if A and B are inde-
pendent events, P(AB) = P(A)P(B). The rule generalizes in similar fashion to 
more than two events.

■■ According to the total probability rule, if S1, S2, …, Sn are mutually exclusive 
and exhaustive scenarios or events, then P(A) = P(A | S1)P(S1) + P(A | S2)P(S2) 
+ … + P(A | Sn)P(Sn).

■■ The expected value of a random variable is a probability- weighted average of 
the possible outcomes of the random variable. For a random variable X, the 
expected value of X is denoted E(X).

■■ The total probability rule for expected value states that E(X) = E(X | S1)P(S1) + 
E(X | S2)P(S2) + … + E(X | Sn)P(Sn), where S1, S2, …, Sn are mutually exclusive 
and exhaustive scenarios or events.

■■ The variance of a random variable is the expected value (the probability- 
weighted average) of squared deviations from the random variable’s expected 
value E(X): σ2(X) = E{[X − E(X)]2}, where σ2(X) stands for the variance of X.

■■ Variance is a measure of dispersion about the mean. Increasing variance 
indicates increasing dispersion. Variance is measured in squared units of the 
original variable.

■■ Standard deviation is the positive square root of variance. Standard deviation 
measures dispersion (as does variance), but it is measured in the same units as 
the variable.

■■ Covariance is a measure of the co- movement between random variables.
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■■ The covariance between two random variables Ri and Rj in a forward- looking 
sense is the expected value of the cross- product of the deviations of the two 
random variables from their respective means: Cov(Ri,Rj) = E{[Ri − E(Ri)][Rj − 
E(Rj)]}. The covariance of a random variable with itself is its own variance.

■■ The historical or sample covariance between two random variables Ri and Rj 
based on a sample of past data of size n is the average value of the product 
of the deviations of observations on two random variables from their sample 
means:

Cov R R R R R R ni j i t i j t j
n

n
, , ,� � � �� � �� � �� �

�
� 1

1

■■ Correlation is a number between −1 and +1 that measures the co- movement 
(linear association) between two random variables: ρ(Ri,Rj) = Cov(Ri,Rj)/[σ(Ri) 
σ(Rj)].

■■ If two variables have a very strong (inverse) linear relation, then the absolute 
value of their correlation will be close to 1 (-1). If two variables have a weak 
linear relation, then the absolute value of their correlation will be close to 0.

■■ If the correlation coefficient is positive, the two variables are positively related; 
if the correlation coefficient is negative, the two variables are inversely related.

■■ To calculate the variance of return on a portfolio of n assets, the inputs needed 
are the n expected returns on the individual assets, n variances of return on the 
individual assets, and n(n − 1)/2 distinct covariances.

■■ Portfolio variance of return is �2

11
R w w R Rp i j i j

j

n

i

n
� � � � �

��
�� Cov , .

■■ The calculation of covariance in a forward- looking sense requires the specifica-
tion of a joint probability function, which gives the probability of joint occur-
rences of values of the two random variables.

■■ When two random variables are independent, the joint probability function is 
the product of the individual probability functions of the random variables.

■■ Bayes’ formula is a method for updating probabilities based on new 
information.

■■ Bayes’ formula is expressed as follows: Updated probability of event given 
the new information = [(Probability of the new information given event)/
(Unconditional probability of the new information)] × Prior probability of 
event.

■■ The multiplication rule of counting says, for example, that if the first step in a 
process can be done in 10 ways, the second step, given the first, can be done in 
5 ways, and the third step, given the first two, can be done in 7 ways, then the 
steps can be carried out in (10)(5)(7) = 350 ways.

■■ The number of ways to assign every member of a group of size n to n slots is n! 
= n (n − 1) (n − 2)(n − 3) … 1. (By convention, 0! = 1.)

■■ The number of ways that n objects can be labeled with k different labels, with n1 
of the first type, n2 of the second type, and so on, with n1 + n2 + … + nk = n, is 
given by n!/(n1!n2! … nk!). This expression is the multinomial formula.

■■ A special case of the multinomial formula is the combination formula. The 
number of ways to choose r objects from a total of n objects, when the order in 
which the r objects are listed does not matter, is

n rC
n
r

n
n r r

�
�

�
�
�

�
� � �� �

!
! !
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■■ The number of ways to choose r objects from a total of n objects, when the 
order in which the r objects are listed does matter, is

n rP n
n r

�
�� �
!

!

This expression is the permutation formula.
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PRACTICE PROBLEMS

1 Suppose that 5% of the stocks meeting your stock- selection criteria are in the 
telecommunications (telecom) industry. Also, dividend- paying telecom stocks 
are 1% of the total number of stocks meeting your selection criteria. What is the 
probability that a stock is dividend paying, given that it is a telecom stock that 
has met your stock selection criteria?

2 You are using the following three criteria to screen potential acquisition targets 
from a list of 500 companies:

Criterion
Fraction of the 500 Companies 

Meeting the Criterion

Product lines compatible 0.20
Company will increase combined sales growth rate 0.45
Balance sheet impact manageable 0.78

 If the criteria are independent, how many companies will pass the screen?
3 Florence Hixon is screening a set of 100 stocks based on two criteria (Criterion 

1 and Criterion 2). She set the passing level such that 50% of the stocks passed 
each screen. For these stocks, the values for Criterion 1 and Criterion 2 are not 
independent but are positively related. How many stocks should pass Hixon’s 
two screens?
A Less than 25
B 25
C More than 25

4 You apply both valuation criteria and financial strength criteria in choosing 
stocks. The probability that a randomly selected stock (from your investment 
universe) meets your valuation criteria is 0.25. Given that a stock meets your 
valuation criteria, the probability that the stock meets your financial strength 
criteria is 0.40. What is the probability that a stock meets both your valuation 
and financial strength criteria?

5 Suppose the prospects for recovering principal for a defaulted bond issue 
depend on which of two economic scenarios prevails. Scenario 1 has probability 
0.75 and will result in recovery of $0.90 per $1 principal value with probabil-
ity 0.45, or in recovery of $0.80 per $1 principal value with probability 0.55. 
Scenario 2 has probability 0.25 and will result in recovery of $0.50 per $1 prin-
cipal value with probability 0.85, or in recovery of $0.40 per $1 principal value 
with probability 0.15.
A Compute the probability of each of the four possible recovery amounts: 

$0.90, $0.80, $0.50, and $0.40.
B Compute the expected recovery, given the first scenario.
C Compute the expected recovery, given the second scenario.
D Compute the expected recovery.
E Graph the information in a probability tree diagram.

6 You have developed a set of criteria for evaluating distressed credits. Companies 
that do not receive a passing score are classed as likely to go bankrupt within 12 
months. You gathered the following information when validating the criteria:

© 2021 CFA Institute. All rights reserved.
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 • Forty percent of the companies to which the test is administered will go bank-
rupt within 12 months: P(non- survivor) = 0.40.

 • Fifty- five percent of the companies to which the test is administered pass it: 
P(pass test) = 0.55.

 • The probability that a company will pass the test given that it will subse-
quently survive 12 months, is 0.85: P(pass test | survivor) = 0.85.
A What is P(pass test | non- survivor)?
B Using Bayes’ formula, calculate the probability that a company is a survivor, 

given that it passes the test; that is, calculate P(survivor | pass test).
C What is the probability that a company is a non- survivor, given that it fails 

the test?
D Is the test effective?

7 In probability theory, exhaustive events are best described as the set of events 
that:
A have a probability of zero.
B are mutually exclusive.
C include all potential outcomes.

8 Which probability estimate most likely varies greatly between people?
A An a priori probability
B An empirical probability
C A subjective probability

9 If the probability that Zolaf Company sales exceed last year’s sales is 0.167, the 
odds for exceeding sales are closest to:
A 1 to 5.
B 1 to 6.
C 5 to 1.

10 After six months, the growth portfolio that Rayan Khan manages has outper-
formed its benchmark. Khan states that his odds of beating the benchmark for 
the year are 3 to 1. If these odds are correct, what is the probability that Khan’s 
portfolio will beat the benchmark for the year?
A 0.33
B 0.67
C 0.75

11 The probability of an event given that another event has occurred is a:
A joint probability.
B marginal probability.
C conditional probability.

12 After estimating the probability that an investment manager will exceed his 
benchmark return in each of the next two quarters, an analyst wants to forecast 
the probability that the investment manager will exceed his benchmark return 
over the two- quarter period in total. Assuming that each quarter’s performance 
is independent of the other, which probability rule should the analyst select?
A Addition rule
B Multiplication rule
C Total probability rule

13 Which of the following is a property of two dependent events?
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A The two events must occur simultaneously.
B The probability of one event influences the probability of the other event.
C The probability of the two events occurring is the product of each event’s 

probability.
14 Which of the following best describes how an analyst would estimate the 

expected value of a firm under the scenarios of bankruptcy and survivorship? 
The analyst would use:
A the addition rule.
B conditional expected values.
C the total probability rule for expected value.

15 An analyst developed two scenarios with respect to the recovery of $100,000 
principal from defaulted loans:

Scenario
Probability 

of Scenario (%)
Amount 

Recovered ($)
Probability 

of Amount (%)

1 40 50,000 60

30,000 40

2 60 80,000 90

60,000 10

 The amount of the expected recovery is closest to:
A $36,400.
B $55,000.
C $63,600.

16 US and Spanish bonds have return standard deviations of 0.64 and 0.56, 
respectively. If the correlation between the two bonds is 0.24, the covariance of 
returns is closest to:
A 0.086.
B 0.335.
C 0.390.

17 The covariance of returns is positive when the returns on two assets tend to:
A have the same expected values.
B be above their expected value at different times.
C be on the same side of their expected value at the same time.

18 Which of the following correlation coefficients indicates the weakest linear 
relationship between two variables?
A –0.67
B –0.24
C 0.33

19 An analyst develops the following covariance matrix of returns:

Hedge Fund Market Index

Hedge fund 256 110
Market index 110 81

 The correlation of returns between the hedge fund and the market index is clos-
est to:
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A 0.005.
B 0.073.
C 0.764.

20 All else being equal, as the correlation between two assets approaches +1.0, the 
diversification benefits:
A decrease.
B stay the same.
C increase.

21 Given a portfolio of five stocks, how many unique covariance terms, excluding 
variances, are required to calculate the portfolio return variance?
A 10
B 20
C 25

22 The probability distribution for a company’s sales is:

Probability Sales ($ millions)

0.05 70
0.70 40
0.25 25

 The standard deviation of sales is closest to:
A $9.81 million.
B $12.20 million.
C $32.40 million.

23 Which of the following statements is most accurate? If the covariance of returns 
between two assets is 0.0023, then:
A the assets’ risk is near zero.
B the asset returns are unrelated.
C the asset returns have a positive relationship.

24 An analyst produces the following joint probability function for a foreign index 
(FI) and a domestic index (DI).

RDI = 30% RDI = 25% RDI = 15%

RFI = 25% 0.25

RFI = 15% 0.50

RFI = 10% 0.25

 The covariance of returns on the foreign index and the returns on the domestic 
index is closest to:
A 26.39.
B 26.56.
C 28.12.

25 A two- stock portfolio includes stocks with the following characteristics:
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Stock 1 Stock 2

Expected return 7% 10%
Standard deviation 12% 25%
Portfolio weights 0.30 0.70
Correlation 0.20

 What is the standard deviation of portfolio returns?
A 14.91%
B 18.56%
C 21.10%

26 Lena Hunziger has designed the three- asset portfolio summarized below:

Asset 1 Asset 2 Asset 3

Expected return 5% 6% 7%
Portfolio weight 0.20 0.30 0.50
Variance- Covariance Matrix

Asset 1 Asset 2 Asset 3
Asset 1 196 105 140
Asset 2 105 225 150
Asset 3 140 150 400

 Hunziger estimated the portfolio return to be 6.3%. What is the portfolio stan-
dard deviation?
A 13.07%
B 13.88%
C 14.62%

27 An analyst estimates that 20% of high- risk bonds will fail (go bankrupt). If she 
applies a bankruptcy prediction model, she finds that 70% of the bonds will 
receive a “good” rating, implying that they are less likely to fail. Of the bonds 
that failed, only 50% had a “good” rating. Use Bayes’ formula to predict the 
probability of failure given a “good” rating. (Hint, let P(A) be the probability of 
failure, P(B) be the probability of a “good” rating, P(B | A) be the likelihood of 
a “good” rating given failure, and P(A | B) be the likelihood of failure given a 
“good” rating.)
A 5.7%
B 14.3%
C 28.6%

28 In a typical year, 5% of all CEOs are fired for “performance” reasons. Assume 
that CEO performance is judged according to stock performance and that 50% 
of stocks have above- average returns or “good” performance. Empirically, 30% 
of all CEOs who were fired had “good” performance. Using Bayes’ formula, what 
is the probability that a CEO will be fired given “good” performance? (Hint, let 
P(A) be the probability of a CEO being fired, P(B) be the probability of a “good” 
performance rating, P(B | A) be the likelihood of a “good” performance rating 
given that the CEO was fired, and P(A | B) be the likelihood of the CEO being 
fired given a “good” performance rating.)
A 1.5%
B 2.5%
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C 3.0%
29 A manager will select 20 bonds out of his universe of 100 bonds to construct a 

portfolio. Which formula provides the number of possible portfolios?
A Permutation formula
B Multinomial formula
C Combination formula

30 A firm will select two of four vice presidents to be added to the investment 
committee. How many different groups of two are possible?
A 6
B 12
C 24

31 From an approved list of 25 funds, a portfolio manager wants to rank 4 mutual 
funds from most recommended to least recommended. Which formula is 
most appropriate to calculate the number of possible ways the funds could be 
ranked?
A Permutation formula
B Multinomial formula
C Combination formula

32 Himari Fukumoto has joined a new firm and is selecting mutual funds in the 
firm’s pension plan. If 10 mutual funds are available, and she plans to select 
four, how many different sets of mutual funds can she choose?
A 210
B 720
C 5,040

Items 33, 34, and 35 are based on the following 
setup:
Gerd Sturm wants to sponsor a contest with a $1 million prize. The winner must pick 
the stocks that will be the top five performers next year among the 30 stocks in a well- 
known large- cap stock index. He asks you to estimate the chances that contestants 
can win the contest.

33 What are the chances of winning if the contestants must pick the five stocks in 
the correct order of their total return? If choosing five stocks randomly, a con-
testant’s chance of winning is one out of:
A 142,506.
B 17,100,720.
C 24,300,000.

34 What are the chances of winning if the contestants must pick the top five stocks 
without regard to order? If choosing five stocks randomly, a contestant’s chance 
of winning is one out of:
A 142,506.
B 17,100,720.
C 24,300,000.

35 Sturm asks, “Can we trust these probabilities of winning?”
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SOLUTIONS

1 Use this equation to find this conditional probability: P(stock is dividend paying 
| telecom stock that meets criteria) = P(stock is dividend paying and telecom 
stock that meets criteria)/P(telecom stock that meets criteria) = 0.01/0.05 = 0.20.

2 According to the multiplication rule for independent events, the probability of 
a company meeting all three criteria is the product of the three probabilities. 
Labeling the event that a company passes the first, second, and third criteria, A, 
B, and C, respectively, P(ABC) = P(A)P(B)P(C) = (0.20)(0.45)(0.78) = 0.0702. As 
a consequence, (0.0702)(500) = 35.10, so 35 companies pass the screen.

3 C is correct. Let event A be a stock passing the first screen (Criterion 1) and 
event B be a stock passing the second screen (Criterion 2). The probability 
of passing each screen is P(A) = 0.50 and P(B) = 0.50. If the two criteria are 
independent, the joint probability of passing both screens is P(AB) = P(A)P(B) 
= 0.50 × 0.50 = 0.25, so 25 out of 100 stocks would pass both screens. However, 
the two criteria are positively related, and P(AB) ≠ 0.25. Using the multiplica-
tion rule for probabilities, the joint probability of A and B is P(AB) = P(A | B)
P(B). If the two criteria are not independent, and if P(B) = 0.50, then the contin-
gent probability of P(A | B) is greater than 0.50. So the joint probability of P(AB) 
= P(A | B)P(B) is greater than 0.25. More than 25 stocks should pass the two 
screens.

4 Use the equation for the multiplication rule for probabilities P(AB) = P(A | B)
P(B), defining A as the event that a stock meets the financial strength criteria 
and defining B as the event that a stock meets the valuation criteria. Then P(AB) 
= P(A | B)P(B) = 0.40 × 0.25 = 0.10. The probability that a stock meets both the 
financial and valuation criteria is 0.10.

5 A Outcomes associated with Scenario 1: With a 0.45 probability of a $0.90 
recovery per $1 principal value, given Scenario 1, and with the probability 
of Scenario 1 equal to 0.75, the probability of recovering $0.90 is 0.45 (0.75) 
= 0.3375. By a similar calculation, the probability of recovering $0.80 is 
0.55(0.75) = 0.4125.

 Outcomes associated with Scenario 2: With a 0.85 probability of a $0.50 
recovery per $1 principal value, given Scenario 2, and with the probability 
of Scenario 2 equal to 0.25, the probability of recovering $0.50 is 0.85(0.25) 
= 0.2125. By a similar calculation, the probability of recovering $0.40 is 
0.15(0.25) = 0.0375.

B E(recovery | Scenario 1) = 0.45($0.90) + 0.55($0.80) = $0.845
C E(recovery | Scenario 2) = 0.85($0.50) + 0.15($0.40) = $0.485
D E(recovery) = 0.75($0.845) + 0.25($0.485) = $0.755

Recovery = $0.755

Scenario 1,
Probability = 0.75

Scenario 2,
Probability = 0.25

Recovery = $0.90
Prob = 0.3375

Recovery = $0.80
Prob = 0.4125

Recovery = $0.50
Prob = 0.2125

Recovery = $0.40
Prob = 0.0375

0.45

0.55

0.85

0.15

Expected
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6 A We can set up the equation using the total probability rule:

P pass test P pass test survivor P survivor

P pass test n

  

 
� � � � � � �

�

�

� oon survivor P non survivor- -� � � �

 We know that P(survivor) = 1 – P(non- survivor) = 1 – 0.40 = 0.60. Therefore, 
P(pass test) = 0.55 = 0.85(0.60) + P(pass test | non- survivor)(0.40).

 Thus, P(pass test | non- survivor) = [0.55 – 0.85(0.60)]/0.40 = 0.10.
B 

P survivor pass test P pass test survivor P pass test| |   � � � � � � ��� ��� � �
� � � �

P survivor

0 85 0 55 0 60 0 927273. . . .

 The information that a company passes the test causes you to update your 
probability that it is a survivor from 0.60 to approximately 0.927.

C According to Bayes’ formula, P(non- survivor | fail test) = [P(fail test | non- 
survivor)/ P(fail test)]P(non- survivor) = [P(fail test | non- survivor)/0.45]0.40.

 We can set up the following equation to obtain P(fail test | non- survivor):

P fail test P fail test non survivor P non survivor

P fai

  - -� � � � � � �
�

|

ll test survivor P survivor

P fail test non survivor

 

0.45  -

|

|
� � � �

� � �� � � �0.40 0.15 0.60

 where P(fail test | survivor) = 1 − P(pass test | survivor) = 1 − 0.85 = 0.15. So 
P(fail test | non- survivor) = [0.45 − 0.15(0.60)]/0.40 = 0.90.

 Using this result with the formula above, we find P(non- survivor | fail test) 
= [0.90/0.45]0.40 = 0.80. Seeing that a company fails the test causes us to 
update the probability that it is a non- survivor from 0.40 to 0.80.

D A company passing the test greatly increases our confidence that it is a 
survivor. A company failing the test doubles the probability that it is a non- 
survivor. Therefore, the test appears to be useful.

7 C is correct. The term “exhaustive” means that the events cover all possible 
outcomes.

8 C is correct. A subjective probability draws on personal or subjective judgment 
that may be without reference to any particular data.

9 A is correct. Given odds for E of a to b, the implied probability of E = a/(a + b). 
Stated in terms of odds a to b with a = 1, b = 5, the probability of E = 1/(1 + 5) 
= 1/6 = 0.167. This result confirms that a probability of 0.167 for beating sales is 
odds of 1 to 5.

10 C is correct. The odds for beating the benchmark = P(beating benchmark) / [1 – 
P(beating benchmark)]. Let P(A) = P(beating benchmark). Odds for beating the 
benchmark = P(A) / [1 – P(A)].

3 = P(A) / [1 – P(A)]

 Solving for P(A), the probability of beating the benchmark is 0.75.
11 C is correct. A conditional probability is the probability of an event given that 

another event has occurred.
12 B is correct. Because the events are independent, the multiplication rule is most 

appropriate for forecasting their joint probability. The multiplication rule for 
independent events states that the joint probability of both A and B occurring is 
P(AB) = P(A)P(B).
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13 B is correct. The probability of the occurrence of one is related to the occur-
rence of the other. If we are trying to forecast one event, information about a 
dependent event may be useful.

14 C is correct. The total probability rule for expected value is used to estimate an 
expected value based on mutually exclusive and exhaustive scenarios.

15 C is correct. If Scenario 1 occurs, the expected recovery is 60% ($50,000) + 
40% ($30,000) = $42,000, and if Scenario 2 occurs, the expected recovery is 
90% ($80,000) + 10%($60,000) = $78,000. Weighting by the probability of each 
scenario, the expected recovery is 40%($42,000) + 60%($78,000) = $63,600. 
Alternatively, first calculating the probability of each amount occurring, the 
expected recovery is (40%)(60%)($50,000) + (40%)(40%)($30,000) + (60%)(90%)
($80,000) + (60%)(10%)($60,000) = $63,600.

16 A is correct. The covariance is the product of the standard deviations and 
correlation using the formula Cov(US bond returns, Spanish bond returns) = 
σ(US bonds) × σ (Spanish bonds) × ρ(US bond returns, Spanish bond returns) = 
0.64 × 0.56 × 0.24 = 0.086.

17 C is correct. The covariance of returns is positive when the returns on both 
assets tend to be on the same side (above or below) their expected values at the 
same time, indicating an average positive relationship between returns.

18 B is correct. Correlations near +1 exhibit strong positive linearity, whereas 
correlations near –1 exhibit strong negative linearity. A correlation of 0 indi-
cates an absence of any linear relationship between the variables. The closer the 
correlation is to 0, the weaker the linear relationship.

19 C is correct. The correlation between two random variables Ri and Rj is defined 
as ρ(Ri,Rj) = Cov(Ri,Rj)/[σ(Ri)σ(Rj)]. Using the subscript i to represent hedge 
funds and the subscript j to represent the market index, the standard deviations 
are σ(Ri) = 2561/2 = 16 and σ(Rj) = 811/2 = 9. Thus, ρ(Ri,Rj) = Cov(Ri,Rj)/[σ(Ri) 
σ(Rj)] = 110/(16 × 9) = 0.764.

20 A is correct. As the correlation between two assets approaches +1, diversifica-
tion benefits decrease. In other words, an increasingly positive correlation indi-
cates an increasingly strong positive linear relationship and fewer diversification 
benefits.

21 A is correct. A covariance matrix for five stocks has 5 × 5 = 25 entries. 
Subtracting the 5 diagonal variance terms results in 20 off- diagonal entries. 
Because a covariance matrix is symmetrical, only 10 entries are unique (20/2 = 
10).

22 A is correct. The analyst must first calculate expected sales as 0.05 × $70 + 
0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = 
$37.75 million.

 After calculating expected sales, we can calculate the variance of sales:

σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)
[$25 – E(Sales)]2

= 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2

= $52.00 million + $3.54 million + $40.64 million = $96.18 million.

 The standard deviation of sales is thus σ = ($96.18)1/2 = $9.81 million.
23 C is correct. The covariance of returns is positive when the returns on both 

assets tend to be on the same side (above or below) their expected values at the 
same time.
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24 B is correct. The covariance is 26.56, calculated as follows. First, expected 
returns are

E(RFI) = (0.25 × 25) + (0.50 × 15) + (0.25 × 10)

= 6.25 + 7.50 + 2.50 = 16.25 and

E(RDI) = (0.25 × 30) + (0.50 × 25) + (0.25 × 15)

= 7.50 + 12.50 + 3.75 = 23.75.

 Covariance is

Cov(RFI,RDI) = P R R R ER R ERFI i DI j FI i FI DI j DI
ji

, , , ,,� � �� � �� ���

= 0.25[(25 – 16.25)(30 – 23.75)] + 0.50[(15 – 16.25)(25 – 23.75)] + 
0.25[(10 – 16.25)(15 – 23.75)]

= 13.67 + (–0.78) + 13.67 = 26.56.

25 B is correct. The covariance between the returns for the two stocks is 
Cov(R1,R2) = ρ(R1,R2) σ(R1) σ(R2) = 0.20 (12) (25) = 60. The portfolio variance is

� � �2
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26 C is correct. For a three- asset portfolio, the portfolio variance is
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 The portfolio standard deviation is

�2 1 2213 69 14 62( ) . . %/Rp � �

27 B is correct. With Bayes’ formula, the probability of failure given a “good” rating 
is

P A B P B A
P B

P A( | ) ( | )
( )

( )=

 where

 P(A) = 0.20 = probability of failure
 P(B) = 0.70 = probability of a “good” rating
 P(B | A) = 0.50 = probability of a “good” rating given failure

With these estimates, the probability of failure given a “good” rating is

P A B P B A
P B

P A( | ) ( | )
( )

( ) .
.

. .� � � �
0 50
0 70

0 20 0 143
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If the analyst uses the bankruptcy prediction model as a guide, the probability of 
failure declines from 20% to 14.3%.

28 C is correct. With Bayes’ formula, the probability of the CEO being fired given a 
“good” rating is

P A B P B A
P B

P A( | ) ( | )
( )

( )=

 where

 P(A) = 0.05 = probability of the CEO being fired
 P(B) = 0.50 = probability of a “good” rating
 P(B | A) = 0.30 = probability of a “good” rating given that the CEO is fired

With these estimates, the probability of the CEO being fired given a “good” rating is

P A B P B A
P B

P A( | ) ( | )
( )

( ) .
.

. .� � � �
0 30
0 50

0 05 0 03

Although 5% of all CEOs are fired, the probability of being fired given a “good” 
performance rating is 3%.

29 C is correct. The combination formula provides the number of ways that r 
objects can be chosen from a total of n objects, when the order in which the r 
objects are listed does not matter. The order of the bonds within the portfolio 
does not matter.

30 A is correct. The answer is found using the combination formula

n rC
n
r

n
n r r

�
�

�
�
�

�
� � �� �

!
! !

 Here, n = 4 and r = 2, so the answer is 4!/[(4 – 2)!2!] = 24/[(2) × (2)] = 6. This 
result can be verified by assuming there are four vice presidents, VP1–VP4. The 
six possible additions to the investment committee are VP1 and VP2, VP1 and 
VP3, VP1 and VP4, VP2 and VP3, VP2 and VP4, and VP3 and VP4.

31 A is correct. The permutation formula is used to choose r objects from a total 
of n objects when order matters. Because the portfolio manager is trying to 
rank the four funds from most recommended to least recommended, the order 
of the funds matters; therefore, the permutation formula is most appropriate.

32 A is correct. The number of combinations is the number of ways to pick four 
mutual funds out of 10 without regard to order, which is

n rC n
n r r
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33 B is correct. The number of permutations is the number of ways to pick five 
stocks out of 30 in the correct order.
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 The contestant’s chance of winning is one out of 17,100,720.
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34 A is correct. The number of combinations is the number of ways to pick five 
stocks out of 30 without regard to order.

n rC n
n r r

�
�� �

!
! !

30 5
30

30 5 5
30 29 28 27 26

5 4 3 2 1
142 506C �

�� �
�

� � � �
� � � �

�
!

! !
,

 The contestant’s chance of winning is one out of 142,506.
35 This contest does not resemble a usual lottery. Each of the 30 stocks does not 

have an equal chance of having the highest returns. Furthermore, contestants 
may have some favored investments, and the 30 stocks will not be chosen with 
the same frequencies. To guard against more than one person selecting the 
winners correctly, Sturm may wish to stipulate that if there is more than one 
winner, the winners will share the $1 million prize.
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Quantitative Methods (2)

This study session introduces the common probability distributions used to describe 
the behavior of random variables, such as asset prices and returns. How to estimate 
measures of a population (mean, standard deviation) based on a population sample 
is shown. The study session provides a framework for hypothesis testing, used for 
validating dataset hypotheses, along with techniques to test a hypothesis. Finally, 
simple linear regression is presented as a method for understanding the relationship 
between two variables as a way of making predictions. 

READING ASSIGNMENTS

Reading 4 Common Probability Distributions 
by Richard A. DeFusco, PhD, CFA, Dennis W. McLeavey, 
DBA, CFA, Jerald E. Pinto, PhD, CFA, and David E. 
Runkle, PhD, CFA

Reading 5 Sampling and Estimation 
by Richard A. DeFusco, PhD, CFA, Dennis W. McLeavey, 
DBA, CFA, Jerald E. Pinto, PhD, CFA, and David E. 
Runkle, PhD, CFA

Reading 6 Hypothesis Testing 
by Pamela Peterson Drake, PhD, CFA

Reading 7 Introduction to Linear Regression 
by Pamela Peterson Drake, PhD, CFA

Q U A N T I T A T I V E  M E T H O D S

S T U D Y  S E S S I O N
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Common Probability Distributions
by Richard A. DeFusco, PhD, CFA, Dennis W. McLeavey, CFA, 
Jerald E. Pinto, PhD, CFA, and David E. Runkle, PhD, CFA

Richard A. DeFusco, PhD, CFA, is at the University of Nebraska–Lincoln (USA). Dennis W. 
McLeavey, DBA, CFA, is at the University of Rhode Island (USA). Jerald E. Pinto, PhD, 
CFA. David E. Runkle, PhD, CFA, is at Jacobs Levy Equity Management (USA).

CFA Institute would like to thank Adam Kobor, PhD, CFA, at New York University 
Investment Office (USA), for this major revision of “Common Probability Distributions,” 
including new visuals, graphics, Microsoft Excel functions, code snippets, and related text 
content throughout the reading.

LEARNING OUTCOMES
Mastery The candidate should be able to:

a. define a probability distribution and compare and contrast 
discrete and continuous random variables and their probability 
functions; 

b. calculate and interpret probabilities for a random variable given 
its cumulative distribution function;

c. describe the properties of a discrete uniform random variable, 
and calculate and interpret probabilities given the discrete 
uniform distribution function;

d. describe the properties of the continuous uniform distribution, 
and calculate and interpret probabilities given a continuous 
uniform distribution;

e. describe the properties of a Bernoulli random variable and 
a binomial random variable, and calculate and interpret 
probabilities given the binomial distribution function;

f. explain the key properties of the normal distribution;

g. contrast a multivariate distribution and a univariate distribution, 
and explain the role of correlation in the multivariate normal 
distribution;

h. calculate the probability that a normally distributed random 
variable lies inside a given interval;

i. explain how to standardize a random variable;

j. calculate and interpret probabilities using the standard normal 
distribution;

(continued)

R E A D I N G
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LEARNING OUTCOMES
Mastery The candidate should be able to:

k. define shortfall risk, calculate the safety- first ratio, and identify an 
optimal portfolio using Roy’s safety- first criterion;

l. explain the relationship between normal and lognormal 
distributions and why the lognormal distribution is used to model 
asset prices;

m. calculate and interpret a continuously compounded rate of return, 
given a specific holding period return;

n. describe the properties of the Student’s t-distribution, and 
calculate and interpret its degrees of freedom;

o. describe the properties of the chi- square distribution and the 
F-distribution, and calculate and interpret their degrees of 
freedom;

p. describe Monte Carlo simulation.

INTRODUCTION AND DISCRETE RANDOM VARIABLES

a define a probability distribution and compare and contrast discrete and contin-
uous random variables and their probability functions

Probabilities play a critical role in investment decisions. Although we cannot predict 
the future, informed investment decisions are based on some kind of probabilistic 
thinking. An analyst may put probability estimates behind the success of her high- 
conviction or low- conviction stock recommendations. Risk managers would typically 
think in probabilistic terms: What is the probability of not achieving the target return, 
or what kind of losses are we facing with high likelihood over the relevant time horizon? 
Probability distributions also underpin validating trade signal–generating models: For 
example, does earnings revision play a significant role in forecasting stock returns?

In nearly all investment decisions, we work with random variables. The return on 
a stock and its earnings per share are familiar examples of random variables. To make 
probability statements about a random variable, we need to understand its probability 
distribution. A probability distribution specifies the probabilities associated with 
the possible outcomes of a random variable.

In this reading, we present important facts about seven probability distributions 
and their investment uses. These seven distributions—the uniform, binomial, nor-
mal, lognormal, Student’s t-, chi- square, and F-distributions—are used extensively 
in investment analysis. Normal and binomial distributions are used in such basic 
valuation models as the Black–Scholes–Merton option pricing model, the binomial 
option pricing model, and the capital asset pricing model. Student’s t-, chi- square, 
and F-distributions are applied in validating statistical significance and in hypothesis 
testing. With the working knowledge of probability distributions provided in this 
reading, you will be better prepared to study and use other quantitative methods, such 
as regression analysis, time- series analysis, and hypothesis testing. After discussing 
probability distributions, we end with an introduction to Monte Carlo simulation, a 
computer- based tool for obtaining information on complex investment problems.

1
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We start by defining basic concepts and terms, then illustrate the operation of 
these concepts through the simplest distribution, the uniform distribution, and then 
address probability distributions that have more applications in investment work but 
also greater complexity.

1.1 Discrete Random Variables

b calculate and interpret probabilities for a random variable given its cumulative 
distribution function

A random variable is a quantity whose future outcomes are uncertain. The two basic 
types of random variables are discrete random variables and continuous random vari-
ables. A discrete random variable can take on at most a countable (possibly infinite) 
number of possible values. For example, a discrete random variable X can take on a 
limited number of outcomes x1, x2, . . ., xn (n possible outcomes), or a discrete random 
variable Y can take on an unlimited number of outcomes y1, y2, . . . (without end). 
The number of “yes” votes at a corporate board meeting, for example, is a discrete 
variable that is countable and finite (from 0 to the voting number of board members). 
The number of trades at a stock exchange is also countable but is infinite, since there 
is no limit to the number of trades by the market participants. Note that X refers to 
the random variable, and x refers to an outcome of X. We subscript outcomes, as in x1 
and x2, when we need to distinguish among different outcomes in a list of outcomes 
of a random variable. Since we can count all the possible outcomes of X and Y (even 
if we go on forever in the case of Y), both X and Y satisfy the definition of a discrete 
random variable.

In contrast, we cannot count the outcomes of a continuous random variable. 
We cannot describe the possible outcomes of a continuous random variable Z with a 
list z1, z2, . . ., because the outcome (z1 + z2)/2, not in the list, would always be pos-
sible. The volume of water in a glass is an example of a continuous random variable 
since we cannot “count” water on a discrete scale but can only measure its volume. In 
finance, unless a variable exhibits truly discrete behavior—for example, a positive or 
negative earnings surprise or the number of central bank board members voting for 
a rate hike—it is practical to work with a continuous distribution in many cases. The 
rate of return on an investment is an example of such a continuous random variable.

In working with a random variable, we need to understand its possible outcomes. 
For example, a majority of the stocks traded on the New Zealand Stock Exchange are 
quoted in increments of NZ$0.01. Quoted stock price is thus a discrete random variable 
with possible values NZ$0, NZ$0.01, NZ$0.02, . . ., but we can also model stock price 
as a continuous random variable (as a lognormal random variable, to look ahead). In 
many applications, we have a choice between using a discrete or a continuous distri-
bution. We are usually guided by which distribution is most efficient for the task we 
face. This opportunity for choice is not surprising, because many discrete distributions 
can be approximated with a continuous distribution, and vice versa. In most practical 
cases, a probability distribution is only a mathematical idealization, or approximate 
model, of the relative frequencies of a random variable’s possible outcomes.

Every random variable is associated with a probability distribution that describes 
the variable completely. We can view a probability distribution in two ways. The basic 
view is the probability function, which specifies the probability that the random 
variable takes on a specific value: P(X = x) is the probability that a random variable X 
takes on the value x. For a discrete random variable, the shorthand notation for the 
probability function (sometimes referred to as the “probability mass function”) is p(x) 
= P(X = x). For continuous random variables, the probability function is denoted f(x) 
and called the probability density function (pdf ), or just the density.
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A probability function has two key properties (which we state, without loss of 
generality, using the notation for a discrete random variable):

■■ 0 ≤ p(x) ≤ 1, because probability is a number between 0 and 1.
■■ The sum of the probabilities p(x) over all values of X equals 1. If we add up the 

probabilities of all the distinct possible outcomes of a random variable, that sum 
must equal 1.

■■ calculate and interpret probabilities for a random variable given its cumulative 
distribution function

We are often interested in finding the probability of a range of outcomes rather than 
a specific outcome. In these cases, we take the second view of a probability distribution, 
the cumulative distribution function (cdf ). The cumulative distribution function, 
or distribution function for short, gives the probability that a random variable X is 
less than or equal to a particular value x, P(X ≤ x). For both discrete and continuous 
random variables, the shorthand notation is F(x) = P(X ≤ x). How does the cumulative 
distribution function relate to the probability function? The word “cumulative” tells 
the story. To find F(x), we sum up, or accumulate, values of the probability function 
for all outcomes less than or equal to x. The function of the cdf is parallel to that of 
cumulative relative frequency.

We illustrate the concepts of probability density functions and cumulative dis-
tribution functions with an empirical example using daily returns (i.e., percentage 
changes) of the fictitious Euro- Asia- Africa (EAA) Equity Index. This dataset spans five 
years and consists of 1,258 observations, with a minimum value of −4.1%, a maximum 
value of 5.0%, a range of 9.1%, and a mean daily return of 0.04%.

Exhibit 1 depicts the histograms, representing pdfs, and empirical cdfs (i.e., accu-
mulated values of the bars in the histograms) based on daily returns of the EAA Equity 
Index. Panels A and B represent the same dataset; the only difference is the histogram 
bins used in Panel A are wider than those used in Panel B, so naturally Panel B has 
more bins. Note that in Panel A, we divided the range of observed daily returns (−5% 
to 5%) into 10 bins, so we chose the bin width to be 1.0%. In Panel B, we wanted a 
more granular histogram with a narrower range, so we divided the range into 20 bins, 
resulting in a bin width of 0.5%. Panel A gives a sense of the observed range of daily 
index returns, whereas Panel B is much more granular, so it more closely resembles 
continuous pdf and cdf graphs.
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Exhibit 1   PDFs and CDFs of Daily Returns for EAA Equity Index
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EXAMPLE 1  

Using PDFs and CDFs of Discrete and Continuous Random 
Variables to Calculate Probabilities
A. Discrete Random Variables: Rolling a Die
The example of rolling a six- sided die is an easy and intuitive way to illustrate 
a discrete random variable’s pdf and cdf.

1 What is the probability that you would roll the number 3?
2 What is the probability that you would roll a number less than or equal to 

3?
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B. Continuous Random Variables: EAA Index Return
We use the EAA Index to illustrate the pdf and cdf for a continuously distrib-
uted random variable. Since daily returns can take on any numbers within a 
reasonable range rather than having discrete outcomes, we represent the pdf 
in the context of bins (as shown in the following table).

Bin PDF Bin PDF

−5% to −4% 0.1% 0% to 1% 44.1%
−4% to −3% 0.6% 1% to 2% 8.8%
−3% to −2% 1.8% 2% to 3% 1.0%
−2% to −1% 6.1% 3% to 4% 0.1%
−1% to 0% 37.4% 4% to 5% 0.1%

In our sample, we did not find any daily returns below −5%, and we found 
only 0.1% of the total observations between −5% and −4%. In the next bin, −4% 
to −3%, we found 0.6% of the total observations, and so on.

3 If this empirical pdf is a guide for the future, what is the probability that 
we will see a daily return less than −2%?

Solution to 1:
Assuming the die is fair, rolling any number from 1 to 6 has a probability of 1/6 
each, so the chance of rolling the number 3 would also equal 1/6. This outcome 
represents the pdf of this game; the pdf at number 3 takes a value of 1/6. In fact, 
it takes a value of 1/6 at every number from 1 to 6.

Solution to 2:
Answering this question involves the cdf of the die game. Three possible events 
would satisfy our criterion—namely, rolling 1, 2, or 3. The probability of rolling 
any of these numbers would be 1/6, so by accumulating them from 1 to 3, we get 
a probability of 3/6, or ½. The cdf of rolling a die takes a value of 1/6 at number 
1, 3/6 (or 50%) at number 3, and 6/6 (or 100%) at number 6.

Solution to 3:
We must calculate the cdf up to −2%. The answer is the sum of the pdfs of the first 
three bins (see the shaded rectangle in the table provided); 0.1% + 0.6% + 1.8% 
= 2.5%. So, the probability that we will see a daily return less than −2% is 2.5%.

Next, we illustrate these concepts with examples and show how we use discrete 
and continuous distributions. We start with the simplest distribution, the discrete 
uniform distribution.

DISCRETE AND CONTINUOUS UNIFORM 
DISTRIBUTION

c describe the properties of a discrete uniform random variable, and calculate and 
interpret probabilities given the discrete uniform distribution function

2
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The simplest of all probability distributions is the discrete uniform distribution. Suppose 
that the possible outcomes are the integers (whole numbers) 1–8, inclusive, and the 
probability that the random variable takes on any of these possible values is the same 
for all outcomes (that is, it is uniform). With eight outcomes, p(x) = 1/8, or 0.125, for 
all values of X (X = 1, 2, 3, 4, 5, 6, 7, 8); this statement is a complete description of this 
discrete uniform random variable. The distribution has a finite number of specified 
outcomes, and each outcome is equally likely. Exhibit 2 summarizes the two views of 
this random variable, the probability function and the cumulative distribution function, 
with Panel A in tabular form and Panel B in graphical form.

Exhibit 2   PDF and DCF for Discrete Uniform Random Variable

A. Probability Function and Cumulative Distribution Function for a Discrete 
Uniform Random Variable

X = x
Probability Function 

p(x) = P(X = x)
Cumulative Distribution Function 

F(x) = P(X ≤ x)

1 0.125 0.125
2 0.125 0.250
3 0.125 0.375
4 0.125 0.500
5 0.125 0.625
6 0.125 0.750
7 0.125 0.875
8 0.125 1.000

p(x)

F(x) 1.0001.000

0.8750.875

0.7500.750

0.6250.625

0.5000.500

0.3750.375

0.2500.250

0.1250.125

00

(x)

CDF

PDF

P(4 ≤ x ≤ 6)

22 885511 33 44 66 77

B. Graph of PDF and CDF for Discrete Uniform Random Variable
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We can use the table in Panel A to find three probabilities: P(X ≤ 7), P(4 ≤ X ≤ 
6), and P(4 < X ≤ 6). The following examples illustrate how to use the cdf to find the 
probability that a random variable will fall in any interval (for any random variable, 
not only the uniform one). The results can also be gleaned visually from the graph 
in Panel B.

■■ The probability that X is less than or equal to 7, P(X ≤ 7), is the next- to- last 
entry in the third column: 0.875, or 87.5%.

■■ To find P(4 ≤ X ≤ 6), we need to find the sum of three probabilities: p(4), p(5), 
and p(6). We can find this sum in two ways. We can add p(4), p(5), and p(6) 
from the second column. Or we can calculate the probability as the difference 
between two values of the cumulative distribution function:

F(6) = P(X ≤ 6) = p(6) + p(5) + p(4) + p(3) + p(2) + p(1),

and

F(3) = P(X ≤ 3) = p(3) + p(2) + p(1),

so

P(4 ≤ X ≤ 6) = F(6) − F(3) = p(6) + p(5) + p(4) = 3/8.

So, we calculate the second probability as F(6) − F(3) = 3/8. This can be seen as 
the shaded area under the step function cdf graph in Panel B.

■■ The third probability, P(4 < X ≤ 6), the probability that X is less than or equal to 
6 but greater than 4, is p(5) + p(6). We compute it as follows, using the cdf:

P(4 < X ≤ 6) = P(X ≤ 6) − P(X ≤ 4) = F(6) − F(4) = p(6) + p(5) = 2/8.

So we calculate the third probability as F(6) − F(4) = 2/8.

Suppose we want to check that the discrete uniform probability function satisfies 
the general properties of a probability function given earlier. The first property is 0 ≤ 
p(x) ≤ 1. We see that p(x) = 1/8 for all x in the first column of in Panel A. [Note that 
p(x) equals 0 for numbers x that are not in that column, such as −14 or 12.215.] The 
first property is satisfied. The second property is that the probabilities sum to 1. The 
entries in the second column of Panel A do sum to 1.

The cdf has two other characteristic properties:

■■ The cdf lies between 0 and 1 for any x: 0 ≤ F(x) ≤ 1.
■■ As x increases, the cdf either increases or remains constant.

Check these statements by looking at the third column in the table in Panel A and at 
the graph in Panel B.

We now have some experience working with probability functions and cdfs for dis-
crete random variables. Later, we will discuss Monte Carlo simulation, a methodology 
driven by random numbers. As we will see, the uniform distribution has an important 
technical use: It is the basis for generating random numbers, which, in turn, produce 
random observations for all other probability distributions.

2.1 Continuous Uniform Distribution

d describe the properties of the continuous uniform distribution, and calculate 
and interpret probabilities given a continuous uniform distribution
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The continuous uniform distribution is the simplest continuous probability distri-
bution. The uniform distribution has two main uses. As the basis of techniques for 
generating random numbers, the uniform distribution plays a role in Monte Carlo 
simulation. As the probability distribution that describes equally likely outcomes, the 
uniform distribution is an appropriate probability model to represent a particular kind 
of uncertainty in beliefs in which all outcomes appear equally likely.

The pdf for a uniform random variable is

f x b a a x b� � � �
�
�
�

��

1

0
 for 

otherwise

� �

For example, with a = 0 and b = 8, f(x) = 1/8, or 0.125. We graph this density in Exhibit 3.

Exhibit 3   Probability Density Function for a Continuous Uniform 
Distribution

f(x)

F(3) = P(X ≤ 3)

0.140.14

0.120.12

0.100.10

0.080.08

0.060.06

0.040.04

0.020.02

00

00 993311 22 44 55 887766

x

The graph of the density function plots as a horizontal line with a value of 0.125.
What is the probability that a uniform random variable with limits a = 0 and b = 8 

is less than or equal to 3, or F(3) = P(X ≤ 3)? When we were working with the discrete 
uniform random variable with possible outcomes 1, 2, . . ., 8, we summed individual 
probabilities: p(1) + p(2) + p(3) = 0.375. In contrast, the probability that a continuous 
uniform random variable or any continuous random variable assumes any given fixed 
value is 0. To illustrate this point, consider the narrow interval 2.510–2.511. Because 
that interval holds an infinity of possible values, the sum of the probabilities of values 
in that interval alone would be infinite if each individual value in it had a positive 
probability. To find the probability F(3), we find the area under the curve graphing 
the pdf, between 0 and 3 on the x-axis (shaded area in Exhibit 3). In calculus, this 
operation is called integrating the probability function f(x) from 0 to 3. This area under 
the curve is a rectangle with base 3 − 0 = 3 and height 1/8. The area of this rectangle 
equals base times height: 3(1/8) = 3/8, or 0.375. So F(3) = 3/8, or 0.375.
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The interval from 0 to 3 is three- eighths of the total length between the limits of 
0 and 8, and F(3) is three- eighths of the total probability of 1. The middle line of the 
expression for the cdf captures this relationship:

F x

x a
x a
b a

x b

a x b( ) .�

�
�
�
�

�

�
�
�

�
�
�

� �

0

1

 for 

 for 

 for 

For our problem, F(x) = 0 for x ≤ 0, F(x) = x/8 for 0 < x < 8, and F(x) = 1 for x ≥ 8. 
Exhibit 4 shows a graph of this cdf.

Exhibit 4   Continuous Uniform Cumulative Distribution

CDF

1.01.0

0.80.8

0.60.6

0.40.4

0.20.2

00

00 993311 22 44 55 887766

x

The mathematical operation that corresponds to finding the area under the curve of 
a pdf f(x) from a to b is the definite integral of f(x) from a to b:

P a X b f x dx
a
b

� �� � � � �� ,

where ∫ dx is the symbol for summing ∫ over small changes dx and the limits of integra-
tion (a and b) can be any real numbers or −∞ and +∞. All probabilities of continuous 
random variables can be computed using Equation 1. For the uniform distribution 
example considered previously, F(7) is Equation 1 with lower limit a = 0 and upper 
limit b = 7. The integral corresponding to the cdf of a uniform distribution reduces to 
the three- line expression given previously. To evaluate Equation 1 for nearly all other 
continuous distributions, including the normal and lognormal, we rely on spreadsheet 
functions, computer programs, or tables of values to calculate probabilities. Those 
tools use various numerical methods to evaluate the integral in Equation 1.

Recall that the probability of a continuous random variable equaling any fixed 
point is 0. This fact has an important consequence for working with the cumulative 
distribution function of a continuous random variable: For any continuous random 
variable X, P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b), because the 
probabilities at the endpoints a and b are 0. For discrete random variables, these 
relations of equality are not true, because for them probability accumulates at points.

(1)
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EXAMPLE 2  

Probability That a Lending Facility Covenant Is Breached
You are evaluating the bonds of a below- investment- grade borrower at a low 
point in its business cycle. You have many factors to consider, including the 
terms of the company’s bank lending facilities. The contract creating a bank 
lending facility such as an unsecured line of credit typically has clauses known 
as covenants. These covenants place restrictions on what the borrower can do. 
The company will be in breach of a covenant in the lending facility if the interest 
coverage ratio, EBITDA/interest, calculated on EBITDA over the four trailing 
quarters, falls below 2.0. EBITDA is earnings before interest, taxes, depreciation, 
and amortization. Compliance with the covenants will be checked at the end of 
the current quarter. If the covenant is breached, the bank can demand immediate 
repayment of all borrowings on the facility. That action would probably trigger a 
liquidity crisis for the company. With a high degree of confidence, you forecast 
interest charges of $25 million. Your estimate of EBITDA runs from $40 million 
on the low end to $60 million on the high end.

Address two questions (treating projected interest charges as a constant):

1 If the outcomes for EBITDA are equally likely, what is the probability that 
EBITDA/interest will fall below 2.0, breaching the covenant?

2 Estimate the mean and standard deviation of EBITDA/interest. For a con-
tinuous uniform random variable, the mean is given by μ = (a + b)/2 and 
the variance is given by σ2 = (b − a)2/12.

Solution to 1:
EBITDA/interest is a continuous uniform random variable because all outcomes 
are equally likely. The ratio can take on values between 1.6  = ($40  million)/
($25 million) on the low end and 2.4 = ($60 million/$25 million) on the high end. 
The range of possible values is 2.4 − 1.6 = 0.8. The fraction of possible values 
falling below 2.0, the level that triggers default, is the distance between 2.0 and 
1.6, or 0.40; the value 0.40 is one- half the total length of 0.8, or 0.4/0.8 = 0.50. 
So, the probability that the covenant will be breached is 50%.

Solution to 2:
In Solution 1, we found that the lower limit of EBITDA/interest is 1.6. This lower 
limit is a. We found that the upper limit is 2.4. This upper limit is b. Using the 
formula given previously,

μ = (a + b)/2 = (1.6 + 2.4)/2 = 2.0.

The variance of the interest coverage ratio is
σ2 = (b − a)2/12 = (2.4 − 1.6)2/12 = 0.053333.

The standard deviation is the positive square root of the variance, 0.230940 = 
(0.053333)1/2. However, the standard deviation is not particularly useful as a 
risk measure for a uniform distribution. The probability that lies within various 
standard deviation bands around the mean is sensitive to different specifications 
of the upper and lower. Here, a one standard deviation interval around the mean 
of 2.0 runs from 1.769 to 2.231 and captures 0.462/0.80 = 0.5775, or 57.8%, of the 
probability. A two standard deviation interval runs from 1.538 to 2.462, which 
extends past both the lower and upper limits of the random variable.
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BINOMIAL DISTRIBUTION

e describe the properties of a Bernoulli random variable and a binomial random 
variable, and calculate and interpret probabilities given the binomial distribu-
tion function

In many investment contexts, we view a result as either a success or a failure or as 
binary (twofold) in some other way. When we make probability statements about a 
record of successes and failures or about anything with binary outcomes, we often 
use the binomial distribution. What is a good model for how a stock price moves over 
time? Different models are appropriate for different uses. Cox, Ross, and Rubinstein 
(1979) developed an option pricing model based on binary moves—price up or price 
down—for the asset underlying the option. Their binomial option pricing model was 
the first of a class of related option pricing models that have played an important role 
in the development of the derivatives industry. That fact alone would be sufficient 
reason for studying the binomial distribution, but the binomial distribution has uses 
in decision making as well.

The building block of the binomial distribution is the Bernoulli random variable, 
named after the Swiss probabilist Jakob Bernoulli (1654–1704). Suppose we have a 
trial (an event that may repeat) that produces one of two outcomes. Such a trial is a 
Bernoulli trial. If we let Y equal 1 when the outcome is success and Y equal 0 when the 
outcome is failure, then the probability function of the Bernoulli random variable Y is

p(1) = P(Y = 1) = p

and
p(0) = P(Y = 0) = 1 − p,

where p is the probability that the trial is a success.
In n Bernoulli trials, we can have 0 to n successes. If the outcome of an individual 

trial is random, the total number of successes in n trials is also random. A binomial 
random variable X is defined as the number of successes in n Bernoulli trials. A bino-
mial random variable is the sum of Bernoulli random variables Yi, where i = 1, 2, . . ., n:

X = Y1 + Y2 + . . . + Yn,

where Yi is the outcome on the ith trial (1 if a success, 0 if a failure). We know that 
a Bernoulli random variable is defined by the parameter p. The number of trials, n, 
is the second parameter of a binomial random variable. The binomial distribution 
makes these assumptions:

■■ The probability, p, of success is constant for all trials.
■■ The trials are independent.

The second assumption has great simplifying force. If individual trials were correlated, 
calculating the probability of a given number of successes in n trials would be much 
more complicated.

Under these two assumptions, a binomial random variable is completely described 
by two parameters, n and p. We write

X ~ B(n, p),

which we read as “X has a binomial distribution with parameters n and p.” You can see 
that a Bernoulli random variable is a binomial random variable with n = 1: Y ~ B(1, p).

Now we can find the general expression for the probability that a binomial random 
variable shows x successes in n trials (also known as the probability mass function). 
We can think in terms of a model of stock price dynamics that can be generalized to 
allow any possible stock price movements if the periods are made extremely small. 

3
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Each period is a Bernoulli trial: With probability p, the stock price moves up; with 
probability 1 − p, the price moves down. A success is an up move, and x is the number 
of up moves or successes in n periods (trials). With each period’s moves independent 
and p constant, the number of up moves in n periods is a binomial random variable. 
We now develop an expression for P(X = x), the probability function for a binomial 
random variable.

Any sequence of n periods that shows exactly x up moves must show n − x down 
moves. We have many different ways to order the up moves and down moves to get 
a total of x up moves, but given independent trials, any sequence with x up moves 
must occur with probability px(1 − p)n−x. Now we need to multiply this probability by 
the number of different ways we can get a sequence with x up moves. Using a basic 
result in counting, there are

n
n x x

!
! !�� �

different sequences in n trials that result in x up moves (or successes) and n − x down 
moves (or failures). Recall that for positive integers n, n factorial (n!) is defined as 
n(n − 1)(n − 2) . . . 1 (and 0! = 1 by convention). For example, 5! = (5)(4)(3)(2)(1) = 
120. The combination formula n!/[(n − x)!x!] is denoted by

n
x
�

�
�
�

�
�

(read “n combination x” or “n choose x”). For example, over three periods, exactly 
three different sequences have two up moves: uud, udu, and duu. We confirm this by

3
2

3
3 2 2

3 2 1
1 2 1

3�

�
�
�

�
� � �� �

�
� �� �� �
� �� �� �

�
!

! !
.

If, hypothetically, each sequence with two up moves had a probability of 0.15, then 
the total probability of two up moves in three periods would be 3 × 0.15 = 0.45. This 
example should persuade you that for X distributed B(n, p), the probability of x suc-
cesses in n trials is given by

p x P X x
n
x

p p n
n x x

p px n x x n x� � � �� � � �
�
�
�

�
� �� � �

�� �
�� �� �1 1!

! !
.

Some distributions are always symmetric, such as the normal, and others are 
always asymmetric or skewed, such as the lognormal. The binomial distribution is 
symmetric when the probability of success on a trial is 0.50, but it is asymmetric or 
skewed otherwise.

We illustrate Equation 2 (the probability function) and the cdf through the sym-
metrical case by modeling the behavior of stock price movements on four consecutive 
trading days in a binomial tree framework. Each day is an independent trial. The stock 
moves up with constant probability p (the up transition probability); if it moves up, 
u is 1 plus the rate of return for an up move. The stock moves down with constant 
probability 1 − p (the down transition probability); if it moves down, d is 1 plus the 
rate of return for a down move. The binomial tree is shown in Exhibit 5, where we 
now associate each of the n = 4 stock price moves with time indexed by t; the shape 
of the graph suggests why it is a called a binomial tree. Each boxed value from which 
successive moves or outcomes branch out in the tree is called a node. The initial 
node, at t = 0, shows the beginning stock price, S. Each subsequent node represents 
a potential value for the stock price at the specified future time.

(2)
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Exhibit 5   A Binomial Model of Stock Price Movement

t = 0 t = 1 t = 2 t = 3 t = 4 Possible PathsPossible Paths

uuuuS uuuu: 1

uuuS

uuS uuudS uuud; uudu; uduu; duuu: 4

uS uudS

S udS uuddS uudd; uddu; udud; dudu; duud; dduu: 6 

dS dduS

ddS ddduS dddu; ddud; dudd; uddd: 4

dddS

ddddS dddd: 1

We see from the tree that the stock price at t = 4 has five possible values: uuuuS, 
uuudS, uuddS, ddduS, and ddddS. The probability that the stock price equals any one 
of these five values is given by the binomial distribution. For example, four sequences 
of moves result in a final stock price of uuudS: These are uuud, uudu, uduu, and duuu. 
These sequences have three up moves out of four moves in total; the combination 
formula confirms that the number of ways to get three up moves (successes) in four 
periods (trials) is 4!/(4 − 3)!3! = 4. Next, note that each of these sequences—uuud, uudu, 
uduu, and duuu—has probability p3(1 − p)1, which equals 0.0625 (= 0.503 × 0.501). So, 
P(S4 = uuudS) = 4[p3(1 − p)], or 0.25, where S4 indicates the stock’s price after four 
moves. This is shown numerically in Panel A of Exhibit 6, in the line indicating three 
up moves in x, as well as graphically in Panel B, as the height of the bar above x = 3. 
Note that in Exhibit 6, columns 5 and 6 in Panel A show the pdf and cdf, respectively, 
for this binomial distribution, and in Panel B, the pdf and cdf are represented by the 
bars and the line graph, respectively.

Exhibit 6   PDF and CDF of Binomial Probabilities for Stock Price Movements 

A. Binomial Probabilities, n = 4 and p = 0.50

Col. 1 
Number of 
Up Moves, 

x

Col. 2 
Implied 
Number 
of Down 
Moves, 

n − x

Col. 3A 
Number of 

Possible Ways 
to Reach x Up 

Moves

Col. 4B 
Probability 

for Each 
Way, 
p(x)

Col. 5C 
Probability 

for x p(x)

Col. 6 
F(x) = P (X 

≤ x)

0 4 1 0.0625 0.0625 0.0625
1 3 4 0.0625 0.2500 0.3125
2 2 6 0.0625 0.3750 0.6875
3 1 4 0.0625 0.2500 0.9375
4 0 1 0.0625 0.0625 1.0000

1.0000

A: Column 3 = n! / [(n − x)! x!]
B: Column 4 = px(1 − p)n−x

C: Column 5 = Column 3 × Column 4
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B. Graphs of Binomial PDF and CDF

To be clear, the binomial random variable in this application is the number of up 
moves. Final stock price distribution is a function of the initial stock price, the num-
ber of up moves, and the size of the up moves and down moves. We cannot say that 
stock price itself is a binomial random variable; rather, it is a function of a binomial 
random variable, as well as of u and d, and initial price, S. This richness is actually one 
key to why this way of modeling stock price is useful: It allows us to choose values of 
these parameters to approximate various distributions for stock price (using a large 
number of time periods). One distribution that can be approximated is the lognormal, 
an important continuous distribution model for stock price that we will discuss later. 
The flexibility extends further. In the binomial tree shown in Exhibit 5, the transition 
probabilities are the same at each node: p for an up move and 1 − p for a down move. 
That standard formula describes a process in which stock return volatility is constant 
over time. Derivatives experts, however, sometimes model changing volatility over 
time using a binomial tree in which the probabilities for up and down moves differ 
at different nodes.

EXAMPLE 3  

A Trading Desk Evaluates Block Brokers
Blocks are orders to sell or buy that are too large for the liquidity ordinarily 
available in dealer networks or stock exchanges. Your firm has known interests 
in certain kinds of stock. Block brokers call your trading desk when they want 
to sell blocks of stocks that they think your firm may be interested in buying. 
You know that these transactions have definite risks. For example, if the broker’s 
client (the seller) has unfavorable information on the stock or if the total amount 
he or she is selling through all channels is not truthfully communicated, you may 
see an immediate loss on the trade. Your firm regularly audits the performance 
of block brokers by calculating the post- trade, market- risk- adjusted returns on 
stocks purchased from block brokers. On that basis, you classify each trade as 
unprofitable or profitable. You have summarized the performance of the brokers 
in a spreadsheet, excerpted in the following table for November of last year. The 
broker names are coded BB001 and BB002.

Exhibit 6   (Continued)
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Block Trading Gains and Losses

Profitable Trades Losing Trades

BB001 3 9
BB002 5 3

You now want to evaluate the performance of the block brokers, and you 
begin with two questions:

1 If you are paying a fair price on average in your trades with a broker, what 
should be the probability of a profitable trade?

2 Did each broker meet or miss that expectation on probability?

You also realize that the brokers’ performance has to be evaluated in light of 
the sample sizes, and for that you need to use the binomial probability function 
(Equation 2).

3 Under the assumption that the prices of trades were fair,
A calculate the probability of three or fewer profitable trades with broker 

BB001.
B calculate the probability of five or more profitable trades with broker 

BB002.

Solution to 1:
If the price you trade at is fair, then 50% of the trades you do with a broker 
should be profitable.

Solution to 2:
Your firm has logged 3 + 9 = 12 trades with block broker BB001. Since 3 of the 
12 trades were profitable, the portion of profitable trades was 3/12, or 25%. 
With broker BB002, the portion of profitable trades was 5/8, or 62.5%. The rate 
of profitable trades with broker BB001 of 25% clearly missed your performance 
expectation of 50%. Broker BB002, at 62.5% profitable trades, exceeded your 
expectation.

Solution to 3:

A For broker BB001, the number of trades (the trials) was n = 12, and 3 were 
profitable. You are asked to calculate the probability of three or fewer 
profitable trades, F(3) = p(3) + p(2) + p(1) + p(0).

 Suppose the underlying probability of a profitable trade with BB001 is p = 
0.50. With n = 12 and p = 0.50, according to Equation 2 the probability of 
three profitable trades is

p
n
x

p px n x3 1 3
12 0 50 0 50

12
12 3 3

0

3 9� � � �
�
�
�

�
� �� � � � �� �� �

�
�� �

� . .

!
! !

.550 220 0 000244 0 05371112 � � � �. . .

 The probability of exactly 3 profitable trades out of 12 is 5.4% if broker 
BB001 were giving you fair prices. Now you need to calculate the other 
probabilities:

p(2) = [12!/(12 − 2)!2!](0.502)(0.5010) = 66(0.000244) = 0.016113.
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p(1) = [12!/(12 − 1)!1!](0.501)(0.5011) = 12(0.000244) = 0.00293.

p(0) = [12!/(12 − 0)!0!](0.500)(0.5012) = 1(0.000244) = 0.000244.

 Adding all the probabilities, F(3) = 0.053711 + 0.016113 + 0.00293 + 
0.000244 = 0.072998, or 7.3%. The probability of making 3 or fewer prof-
itable trades out of 12 would be 7.3% if your trading desk were getting fair 
prices from broker BB001.

B For broker BB002, you are assessing the probability that the underlying 
probability of a profitable trade with this broker was 50%, despite the good 
results. The question was framed as the probability of making five or more 
profitable trades if the underlying probability is 50%: 1 − F(4) = p(5) + p(6) 
+ p(7) + p(8). You could calculate F(4) and subtract it from 1, but you can 
also calculate p(5) + p(6) + p(7) + p(8) directly.

 You begin by calculating the probability that exactly five out of eight 
trades would be profitable if BB002 were giving you fair prices:

p 5
8
5

0 50 0 50

56 0 003906 0 21875

5 3� � � �
�
�
�

�
�� �� �

� � � �

. .

. . .

 The probability is about 21.9%. The other probabilities are as follows:

p(6) = 28(0.003906) = 0.109375.

p(7) = 8(0.003906) = 0.03125.

p(8) = 1(0.003906) = 0.003906.

 So, p(5) + p(6) + p(7) + p(8) = 0.21875 + 0.109375 + 0.03125 + 0.003906 = 
0.363281, or 36.3%. A 36.3% probability is substantial; the underlying 
probability of executing a fair trade with BB002 might well have been 0.50 
despite your success with BB002 in November of last year. If one of the 
trades with BB002 had been reclassified from profitable to unprofitable, 
exactly half the trades would have been profitable. In summary, your trad-
ing desk is getting at least fair prices from BB002; you will probably want 
to accumulate additional evidence before concluding that you are trading 
at better- than- fair prices.

 The magnitude of the profits and losses in these trades is another import-
ant consideration. If all profitable trades had small profits but all unprof-
itable trades had large losses, for example, you might lose money on your 
trades even if the majority of them were profitable.

Two descriptors of a distribution that are often used in investments are the 
mean and the variance (or the standard deviation, the positive square root of vari-
ance). Exhibit 7 gives the expressions for the mean and variance of binomial random 
variables.
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Exhibit 7   Mean and Variance of Binomial Random 
Variables

Mean Variance

Bernoulli, B(1, p) P p(1 − p)
Binomial, B(n, p) Np np(1 − p)

Because a single Bernoulli random variable, Y ~ B(1, p), takes on the value 1 with 
probability p and the value 0 with probability 1 − p, its mean or weighted- average 
outcome is p. Its variance is p(1 − p). A general binomial random variable, B(n, p), 
is the sum of n Bernoulli random variables, and so the mean of a B(n, p) random 
variable is np. Given that a B(1, p) variable has variance p(1 − p), the variance of a 
B(n, p) random variable is n times that value, or np(1 − p), assuming that all the trials 
(Bernoulli random variables) are independent. We can illustrate the calculation for 
two binomial random variables with differing probabilities as follows:

Random Variable Mean Variance

B(n = 5, p = 0.50) 2.50 = 5(0.50) 1.25 = 5(0.50)(0.50)
B(n = 5, p = 0.10) 0.50 = 5(0.10) 0.45 = 5(0.10)(0.90)

For a B(n = 5, p = 0.50) random variable, the expected number of successes is 2.5, with 
a standard deviation of 1.118 = (1.25)1/2; for a B(n = 5, p = 0.10) random variable, the 
expected number of successes is 0.50, with a standard deviation of 0.67 = (0.45)1/2.

EXAMPLE 4  

The Expected Number of Defaults in a Bond Portfolio
Suppose as a bond analyst you are asked to estimate the number of bond issues 
expected to default over the next year in an unmanaged high- yield bond portfolio 
with 25 US issues from distinct issuers. The credit ratings of the bonds in the 
portfolio are tightly clustered around Moody’s B2/Standard & Poor’s B, meaning 
that the bonds are speculative with respect to the capacity to pay interest and 
repay principal. The estimated annual default rate for B2/B rated bonds is 10.7%.

1 Over the next year, what is the expected number of defaults in the portfo-
lio, assuming a binomial model for defaults?

2 Estimate the standard deviation of the number of defaults over the com-
ing year.

3 Critique the use of the binomial probability model in this context.

Solution to 1:
For each bond, we can define a Bernoulli random variable equal to 1 if the 
bond defaults during the year and zero otherwise. With 25 bonds, the expected 
number of defaults over the year is np = 25(0.107) = 2.675, or approximately 3.

Solution to 2:
The variance is np(1 − p) = 25(0.107)(0.893) = 2.388775. The standard devia-
tion is (2.388775)1/2 = 1.55. Thus, a two standard deviation confidence interval 
(±3.10) about the expected number of defaults (≈ 3), for example, would run 
from approximately 0 to approximately 6.
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Solution to 3:
An assumption of the binomial model is that the trials are independent. In this 
context, a trial relates to whether an individual bond issue will default over the 
next year. Because the issuing companies probably share exposure to common 
economic factors, the trials may not be independent. Nevertheless, for a quick 
estimate of the expected number of defaults, the binomial model may be adequate.

NORMAL DISTRIBUTION

f explain the key properties of the normal distribution
g contrast a multivariate distribution and a univariate distribution, and explain 

the role of correlation in the multivariate normal distribution

In this section, we focus on the two most important continuous distributions in 
investment work, the normal and lognormal.

4.1 The Normal Distribution
The normal distribution may be the most extensively used probability distribution in 
quantitative work. It plays key roles in modern portfolio theory and in several risk 
management technologies. Because it has so many uses, the normal distribution must 
be thoroughly understood by investment professionals.

The role of the normal distribution in statistical inference and regression analysis 
is vastly extended by a crucial result known as the central limit theorem. The central 
limit theorem states that the sum (and mean) of a large number of independent random 
variables (with finite variance) is approximately normally distributed.

The French mathematician Abraham de Moivre (1667–1754) introduced the 
normal distribution in 1733 in developing a version of the central limit theorem. As 
Exhibit 8 shows, the normal distribution is symmetrical and bell- shaped. The range of 
possible outcomes of the normal distribution is the entire real line: all real numbers 
lying between −∞ and +∞. The tails of the bell curve extend without limit to the left 
and to the right.

4
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Exhibit 8   PDFs of Two Different Normal Distributions

PDF with
µ = 0, σ = 1

PDF with
µ = 0, σ = 2

–8–8 88–4–4–6–6 –2–2 22 4400 66

x

The defining characteristics of a normal distribution are as follows:

■■ The normal distribution is completely described by two parameters—its mean, 
μ, and variance, σ2. We indicate this as X ~ N(μ, σ2) (read “X follows a normal 
distribution with mean μ and variance σ2”). We can also define a normal distri-
bution in terms of the mean and the standard deviation, σ (this is often conve-
nient because σ is measured in the same units as X and μ). As a consequence, 
we can answer any probability question about a normal random variable if we 
know its mean and variance (or standard deviation).

■■ The normal distribution has a skewness of 0 (it is symmetric). The normal 
distribution has a kurtosis of 3; its excess kurtosis (kurtosis − 3.0) equals 0. As a 
consequence of symmetry, the mean, the median, and the mode are all equal for 
a normal random variable.

■■ A linear combination of two or more normal random variables is also normally 
distributed.

■■ contrast a multivariate distribution and a univariate distribution, and explain 
the role of correlation in the multivariate normal distribution

The foregoing bullet points and descriptions concern a single variable or univariate 
normal distribution: the distribution of one normal random variable. A univariate 
distribution describes a single random variable. A multivariate distribution speci-
fies the probabilities for a group of related random variables. You will encounter the 
multivariate normal distribution in investment work and readings and should know 
the following about it.

When we have a group of assets, we can model the distribution of returns on 
each asset individually or on the assets as a group. “As a group” implies that we take 
account of all the statistical interrelationships among the return series. One model 
that has often been used for security returns is the multivariate normal distribution. 
A multivariate normal distribution for the returns on n stocks is completely defined 
by three lists of parameters:

■■ the list of the mean returns on the individual securities (n means in total);
■■ the list of the securities’ variances of return (n variances in total); and
■■ the list of all the distinct pairwise return correlations: n(n − 1)/2 distinct cor-

relations in total.
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The need to specify correlations is a distinguishing feature of the multivariate normal 
distribution in contrast to the univariate normal distribution.

The statement “assume returns are normally distributed” is sometimes used to 
mean a joint normal distribution. For a portfolio of 30 securities, for example, portfolio 
return is a weighted average of the returns on the 30 securities. A weighted average is 
a linear combination. Thus, portfolio return is normally distributed if the individual 
security returns are (joint) normally distributed. To review, in order to specify the 
normal distribution for portfolio return, we need the means, the variances, and the 
distinct pairwise correlations of the component securities.

With these concepts in mind, we can return to the normal distribution for one 
random variable. The curves graphed in Exhibit 8 are the normal density function:

f x
x

x� � �
� �� ��

�

�
�

�

�

�
�

� � � � ��
1
2 2

2

2� �

�

�
exp  for .

The two densities graphed in Exhibit 8 correspond to a mean of μ = 0 and standard 
deviations of σ = 1 and σ = 2. The normal density with μ = 0 and σ = 1 is called the 
standard normal distribution (or unit normal distribution). Plotting two normal 
distributions with the same mean and different standard deviations helps us appreciate 
why standard deviation is a good measure of dispersion for the normal distribution: 
Observations are much more concentrated around the mean for the normal distri-
bution with σ = 1 than for the normal distribution with σ = 2.

Exhibit 9 illustrates the relationship between the pdf (density function) and cdf 
(distribution function) of the standard normal distribution (mean = 0, standard devi-
ation = 1). Most of the time, we associate a normal distribution with the “bell curve,” 
which, in fact, is the probability density function of the normal distribution, depicted 
in Panel A. The cumulative distribution function, depicted in Panel B, in fact plots the 
size of the shaded areas of the pdfs. Let’s take a look at the third row: In Panel A, we 
have shaded the bell curve up to x = 0, the mean of the standard normal distribution. 
This shaded area corresponds to 50% in the cdf graph, as seen in Panel B, meaning 
that 50% of the observations of a normally distributed random variable would be 
equal or less than the mean.

(3)
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Exhibit 9   Density and Distribution Functions of the Standard Normal 
Distribution

A. PDFs
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Although not literally accurate, the normal distribution can be considered an 
approximate model for asset returns. Nearly all the probability of a normal random 
variable is contained within three standard deviations of the mean. For realistic values 
of mean return and return standard deviation for many assets, the normal probability 
of outcomes below −100% is very small.

Whether the approximation is useful in a given application is an empirical ques-
tion. For example, Fama (1976) and Campbell, Lo, and MacKinlay (1997) showed that 
the normal distribution is a closer fit for quarterly and yearly holding period returns 
on a diversified equity portfolio than it is for daily or weekly returns. A persistent 
departure from normality in most equity return series is kurtosis greater than 3, the 
fat- tails problem. So when we approximate equity return distributions with the normal 
distribution, we should be aware that the normal distribution tends to underestimate 
the probability of extreme returns.

Fat tails can be modeled, among other things, by a mixture of normal random 
variables or by a Student’s t-distribution (which we shall cover shortly). In addition, 
since option returns are skewed, we should be cautious in using the symmetrical nor-
mal distribution to model the returns on portfolios containing significant positions 
in options.
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The normal distribution is also less suitable as a model for asset prices than as a 
model for returns. An asset price can drop only to 0, at which point the asset becomes 
worthless. As a result, practitioners generally do not use the normal distribution to 
model the distribution of asset prices but work with the lognormal distribution, which 
we will discuss later.

4.2 Probabilities Using the Normal Distribution

h calculate the probability that a normally distributed random variable lies inside 
a given interval

Having established that the normal distribution is the appropriate model for a variable 
of interest, we can use it to make the following probability statements:

■■ Approximately 50% of all observations fall in the interval μ ± (2/3)σ.
■■ Approximately 68% of all observations fall in the interval μ ± σ.
■■ Approximately 95% of all observations fall in the interval μ ± 2σ.
■■ Approximately 99% of all observations fall in the interval μ ± 3σ.

One, two, and three standard deviation intervals are illustrated in Exhibit  10. The 
intervals indicated are easy to remember but are only approximate for the stated 
probabilities. More precise intervals are μ ± 1.96σ for 95% of the observations and μ 
± 2.58σ for 99% of the observations.

Exhibit 10   Units of Standard Deviation

–1s–1s–3s–3s –2s–2s xx–– 1s1s 2s2s 3s3s

2.14% 13.59% 34.13% 34.13% 13.59% 2.14%

In general, we do not observe the mean or the standard deviation of the distribu-
tion of the whole population, so we need to estimate them from an observable sample. 
We estimate the population mean, μ, using the sample mean, X  (sometimes denoted 
as �� ), and estimate the population standard deviation, σ, using the sample standard 

deviation, s (sometimes denoted as σ ).
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EXAMPLE 5  

Calculating Probabilities from the Normal Distribution
The chief investment officer of Fund XYZ would like to present some investment 
return scenarios to the Investment Committee, so she asks your assistance with 
some indicative numbers. Assuming daily asset returns are normally distributed, 
she would like to know the following:

1 What is the probability that returns would be less than or equal to 1 stan-
dard deviation below the mean?

2 What is the probability that returns would be between +1 and −1 standard 
deviation around the mean?

3 What is the probability that returns would be less than or equal to −2 
standard deviations below the mean?

4 How far (in terms of standard deviation) must returns fall below the mean 
for the probability to equal 95%?

Note on Answering Questions 1–4:

Normal distribution–related functions are part of spreadsheets, R, Python, and 
all statistical packages. Here, we use Microsoft Excel functions to answer these 
questions. When we speak in terms of “number of standard deviations above or 
below the mean,” we are referring to the standard normal distribution (i.e., mean 
of 0 and standard deviation of 1), so it is best to use Excel’s “=NORM.S.DIST(Z, 
0 or 1)” function. “Z” represents the distance in number of standard deviations 
away from the mean, and the second parameter of the function is either 0 (Excel 
returns pdf value) or 1 (Excel returns cdf value).

Solution to 1:
To answer Question 1, we need the normal cdf value (so, set the second parameter 
equal to 1) that is associated with a Z value of −1 (i.e., one standard deviation 
below the mean). Thus, “=NORM.S.DIST(-1,1)” returns 0.1587, or 15.9%.

Solution to 2:
Here, we need to calculate the area under the normal pdf within the range of the 
mean ±1 standard deviation. The area under the pdf is the cdf, so we must calcu-
late the difference between the cdf one standard deviation above the mean and 
the cdf one standard deviation below the mean. Note that “=NORM.S.DIST(1,1)” 
returns 0.8413, or 84.1%, which means that 84.1% of all observations of a nor-
mally distributed random variable would fall below the mean plus one standard 
deviation. We already calculated 15.9% for the probability that observations for 
such a variable would fall less than one standard deviation below the mean in 
the Solution to 1, so the answer here is 84.1% − 15.9% = 68.3%.

Solution to 3:
Similar to Solution 1, use the Excel function “=NORM.S.DIST(-2,1)”—which 
returns a probability of 0.0228, or 2.3%.

Solution to 4:
This question is a typical way of phrasing “value at risk.” In statistical terms, we 
want to know the lowest return value below which only 5% of the observations 
would fall. Thus, we need to find the Z value for which the normal cdf would 
be 5% probability. To do this, we use the inverse of the cdf function—that is, 
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“=NORM.S.INV(0.05)”—which results in −1.6449, or −1.64. In other words, 
only 5% of the observations should fall below the mean minus 1.64 standard 
deviations, or equivalently, 95% of the observations should exceed this threshold.

There are as many different normal distributions as there are choices for mean (μ) 
and variance (σ2). We can answer all the previous questions in terms of any normal 
distribution. Spreadsheets, for example, have functions for the normal cdf for any 
specification of mean and variance. For the sake of efficiency, however, we would like 
to refer all probability statements to a single normal distribution. The standard normal 
distribution (the normal distribution with μ = 0 and σ = 1) fills that role.

4.3 Standardizing a Random Variable

 i. explain how to standardize a random variable

There are two steps in standardizing a normal random variable X: Subtract the 
mean of X from X and then divide that result by the standard deviation of X (this is 
also known as computing the Z-score). If we have a list of observations on a normal 
random variable, X, we subtract the mean from each observation to get a list of 
deviations from the mean and then divide each deviation by the standard deviation. 
The result is the standard normal random variable, Z (Z is the conventional symbol 
for a standard normal random variable). If we have X ~ N(μ, σ2) (read “X follows the 
normal distribution with parameters μ and σ2”), we standardize it using the formula

Z = (X − μ)/σ.  

Suppose we have a normal random variable, X, with μ = 5 and σ = 1.5. We standard-
ize X with Z = (X − 5)/1.5. For example, a value X = 9.5 corresponds to a standardized 
value of 3, calculated as Z = (9.5 − 5)/1.5 = 3. The probability that we will observe 
a value as small as or smaller than 9.5 for X ~ N(5, 1.5) is exactly the same as the 
probability that we will observe a value as small as or smaller than 3 for Z ~ N(0, 1).

4.4 Probabilities Using the Standard Normal Distribution

j calculate and interpret probabilities using the standard normal distribution

We can answer all probability questions about X using standardized values. We gen-
erally do not know the population mean and standard deviation, so we often use the 
sample mean X  for μ and the sample standard deviation s for σ. Standard normal 
probabilities are computed with spreadsheets, statistical and econometric software, 
and programming languages. Tables of the cumulative distribution function for the 
standard normal random variable are also readily available.

To find the probability that a standard normal variable is less than or equal to 0.24, 
for example, calculate NORM.S.DIST(0.24,1)=0.5948; thus, P(Z ≤ 0.24) = 0.5948, or 
59.48%. If we want to find the probability of observing a value 1.65 standard deviations 
below the mean, calculate NORM.S.DIST(-1.65,1)=0.04947, or roughly 5%.

The following are some of the most frequently referenced values when using the 
normal distribution, and for these values, =NORM.S.INV(Probability) is a convenient 
Excel function:

■■ The 90th percentile point is 1.282, or NORM.S.INV(0.90)=1.28155. Thus, only 
10% of values remain in the right tail beyond the mean plus 1.28 standard 
deviations;

(4)
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■■ The 95th percentile point is 1.65, or NORM.S.INV(0.95)=1.64485, which means 
that P(Z ≤ 1.65) = N(1.65) = 0.95, or 95%, and 5% of values remain in the right 
tail. The 5th percentile point, in contrast, is NORM.S.INV(0.05)=- 1.64485—that 
is, the same number as for 95%, but with a negative sign.

■■ Note the difference between the use of a percentile point when dealing with 
one tail rather than two tails. We used 1.65 because we are concerned with the 
5% of values that lie only on one side, the right tail. If we want to cut off both 
the left and right 5% tails, then 90% of values would stay within the mean ±1.65 
standard deviations range.

■■ The 99th percentile point is 2.327: P(Z ≤ 2.327) = N(2.327) = 0.99, or 99%, and 
1% of values remain in the right tail.

EXAMPLE 6  

Probabilities for a Common Stock Portfolio
Assume the portfolio mean return is 12% and the standard deviation of return 
estimate is 22% per year. Note also that if X is portfolio return, the standard-
ized portfolio return is Z = (X − X )/s = (X − 12%)/22%. We use this expression 
throughout the solutions.
You want to calculate the following probabilities, assuming that a normal dis-
tribution describes returns.

1 What is the probability that portfolio return will exceed 20%?
2 What is the probability that portfolio return will be between 12% and 

20%? In other words, what is P(12% ≤ portfolio return ≤ 20%)?
3 You can buy a one- year T- bill that yields 5.5%. This yield is effectively a 

one- year risk- free interest rate. What is the probability that your portfo-
lio’s return will be equal to or less than the risk- free rate?

Solution to 1:
For X = 20%, Z = (20% − 12%)/22% = 0.363636. You want to find P(Z > 0.363636). 
First, note that P(Z > x) = P(Z ≥ x) because the normal distribution is a contin-
uous distribution. Also, recall that P(Z ≥ x) = 1.0 − P(Z ≤ x) or 1 − N(x). Next, 
NORM.S.DIST(0.363636,1)=0.64194, so, 1 − 0.6419  = 0.3581. Therefore, the 
probability that portfolio return will exceed 20% is about 36% if your normality 
assumption is accurate.

Solution to 2:
P(12% ≤ Portfolio return ≤ 20%) = N(Z corresponding to 20%) − N(Z correspond-
ing to 12%). For the first term, Z = (20% − 12%)/22% = 0.363636, and N(0.363636) 
= 0.6419 (as in Solution 1). To get the second term immediately, note that 12% is 
the mean, and for the normal distribution, 50% of the probability lies on either 
side of the mean. Therefore, N(Z corresponding to 12%) must equal 50%. So 
P(12% ≤ Portfolio return ≤ 20%) = 0.6419 − 0.50 = 0.1419, or approximately 14%.

Solution to 3:
If X is portfolio return, then we want to find P(Portfolio return ≤ 5.5%). For X = 
5.5%, Z = (5.5% − 12%)/22% = −0.2955. Using NORM.S.DIST(-0.2955,1)=0.3838, 
we see an approximately 38% chance the portfolio’s return will be equal to or 
less than the risk- free rate.
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Next, we will briefly discuss and illustrate the concept of the central limit theorem, 
according to which the sum (as well as the mean) of a set of independent, identically 
distributed random variables with finite variances is normally distributed, whatever 
distribution the random variables follow.

To illustrate this concept, consider a sample of 30 observations of a random vari-
able that can take a value of just −100, 0, or 100, with equal probability. Clearly, this 
sample is drawn from a simple discrete uniform distribution, where the possible values 
of −100, 0, and 100 each have 1/3 probability. We randomly pick 10 elements of this 
sample and calculate the sum of these elements, and then we repeat this process a 
total of 100 times. The histogram in Exhibit 11 shows the distribution of these sums: 
The underlying distribution is a very simple discrete uniform distribution, but the 
sums converge toward a normal distribution.

Exhibit 11   Central Limit Theorem: Sums of Elements from Discrete Uniform 
Distribution Converge to Normal Distribution
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APPLICATIONS OF THE NORMAL DISTRIBUTION

k define shortfall risk, calculate the safety- first ratio, and identify an optimal port-
folio using Roy’s safety- first criterion

Modern portfolio theory (MPT) makes wide use of the idea that the value of investment 
opportunities can be meaningfully measured in terms of mean return and variance of 
return. In economic theory, mean–variance analysis holds exactly when investors 
are risk averse; when they choose investments so as to maximize expected utility, or 
satisfaction; and when either (1) returns are normally distributed or (2) investors have 
quadratic utility functions, a concept used in economics for a mathematical repre-
sentation of attitudes toward risk and return. Mean–variance analysis, however, can 
still be useful—that is, it can hold approximately—when either Assumption 1 or 2 is 
violated. Because practitioners prefer to work with observables, such as returns, the 
proposition that returns are at least approximately normally distributed has played a 
key role in much of MPT.

To illustrate this concept, assume an investor is saving for retirement, and although 
her goal is to earn the highest real return possible, she believes that the portfolio 
should at least achieve real capital preservation over the long term. Assuming a long- 
term expected inflation rate of 2%, the minimum acceptable return would be 2%. 

5
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Exhibit 12 compares three investment alternatives in terms of their expected returns 
and standard deviation of returns. The probability of falling below 2% is calculated 
on basis of the assumption of normally distributed returns. In the table, we see that 
Portfolio II, which combines the highest expected return and the lowest volatility, has 
the lowest probability of earning less than 2% (or equivalently, the highest probability 
of earning at least 2%). This can also be seen in Panel B, where Portfolio II has the 
smallest shaded area to the left of 2% (the probability of earning less than the mini-
mum acceptable return).

Exhibit 12   Probability of Earning a Minimum Acceptable Return 

Portfolio I II II

Expected return 5% 8% 5%
Standard deviation of return 8% 8% 12%
Probability of earning < 2% [P(x < 2)] 37.7% 24.6% 41.7%
Probability of earning ≥ 2% [P(x ≥ 2)] 62.3% 75.4% 58.3%
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0.050.05

0.030.03

0.020.02

0.010.01

0.040.04

00

–40–40 4040–20–20–30–30 –10–10 00 20201010 3030

Return

Minimum Acceptable
Return = 2%

Mean = 5%

B. Portfolio II

0.050.05

0.030.03

0.020.02

0.010.01

0.040.04

00

–40–40 4040–20–20–30–30 –10–10 00 20201010 3030

Return

Minimum Acceptable
Return = 2%

Mean = 8 %

C. Portfolio III

0.050.05

0.030.03

0.020.02

0.010.01

0.040.04

00

–40–40 4040–20–20–30–30 –10–10 00 20201010 3030

Return

Minimum Acceptable
Return = 2%

Mean = 5%

© CFA Institute. For candidate use only. Not for distribution.



Applications of the Normal Distribution 267

Mean–variance analysis generally considers risk symmetrically in the sense that 
standard deviation captures variability both above and below the mean. An alternative 
approach evaluates only downside risk. We discuss one such approach, safety- first 
rules, because they provide an excellent illustration of the application of normal distri-
bution theory to practical investment problems. Safety- first rules focus on shortfall 
risk, the risk that portfolio value (or portfolio return) will fall below some minimum 
acceptable level over some time horizon. The risk that the assets in a defined benefit 
plan will fall below plan liabilities is an example of a shortfall risk.

Suppose an investor views any return below a level of RL as unacceptable. Roy’s 
safety- first criterion (Roy 1952) states that the optimal portfolio minimizes the prob-
ability that portfolio return, RP, will fall below the threshold level, RL. In symbols, the 
investor’s objective is to choose a portfolio that minimizes P(RP < RL). When portfolio 
returns are normally distributed, we can calculate P(RP < RL) using the number of 
standard deviations that RL lies below the expected portfolio return, E(RP). The port-
folio for which E(RP) − RL is largest relative to standard deviation minimizes P(RP < 
RL). Therefore, if returns are normally distributed, the safety- first optimal portfolio 
maximizes the safety- first ratio (SFRatio):

SFRatio = [E(RP) − RL]/σP .

The quantity E(RP) − RL is the distance from the mean return to the shortfall level. 
Dividing this distance by σP gives the distance in units of standard deviation. There 
are two steps in choosing among portfolios using Roy’s criterion (assuming normality):

1 Calculate each portfolio’s SFRatio.
2 Choose the portfolio with the highest SFRatio.

For a portfolio with a given safety- first ratio, the probability that its return will be 
less than RL is N(–SFRatio), and the safety- first optimal portfolio has the lowest such 
probability. For example, suppose an investor’s threshold return, RL, is 2%. He is pre-
sented with two portfolios. Portfolio 1 has an expected return of 12%, with a standard 
deviation of 15%. Portfolio 2 has an expected return of 14%, with a standard deviation 
of 16%. The SFRatios, using Equation 5, are 0.667 = (12 − 2)/15 and 0.75 = (14 − 2)/16 
for Portfolios 1 and 2, respectively. For the superior Portfolio 2, the probability that 
portfolio return will be less than 2% is N(−0.75) = 1 − N(0.75) = 1 − 0.7734 = 0.227, 
or about 23%, assuming that portfolio returns are normally distributed.

You may have noticed the similarity of the SFRatio to the Sharpe ratio. If we sub-
stitute the risk- free rate, RF, for the critical level RL, the SFRatio becomes the Sharpe 
ratio. The safety- first approach provides a new perspective on the Sharpe ratio: When 
we evaluate portfolios using the Sharpe ratio, the portfolio with the highest Sharpe 
ratio is the one that minimizes the probability that portfolio return will be less than 
the risk- free rate (given a normality assumption).

EXAMPLE 7  

The Safety- First Optimal Portfolio for a Client
You are researching asset allocations for a client in Canada with a C$800,000 
portfolio. Although her investment objective is long- term growth, at the end of 
a year she may want to liquidate C$30,000 of the portfolio to fund educational 
expenses. If that need arises, she would like to be able to take out the C$30,000 
without invading the initial capital of C$800,000. The table below shows three 
alternative allocations.

(5)
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Mean and Standard Deviation for Three Allocations (in 
Percent) 

Allocation A B C

Expected annual return 25 11 14
Standard deviation of return 27 8 20

Address these questions (assume normality for Questions 2 and 3):

1 Given the client’s desire not to invade the C$800,000 principal, what is the 
shortfall level, RL? Use this shortfall level to answer Question 2.

2 According to the safety- first criterion, which of the three allocations is the 
best?

3 What is the probability that the return on the safety- first optimal portfolio 
will be less than the shortfall level?

Solution to 1:
Because C$30,000/C$800,000 is 3.75%, for any return less than 3.75% the client 
will need to invade principal if she takes out C$30,000. So, RL = 3.75%.

Solution to 2:
To decide which of the three allocations is safety- first optimal, select the alter-
native with the highest ratio [E(RP) − RL]/σP:

Allocation A: 0.787037 = (25 − 3.75)/27.
Allocation B: 0.90625 = (11 − 3.75)/8.
Allocation C: 0.5125 = (14 − 3.75)/20.

Allocation B, with the largest ratio (0.90625), is the best alternative according 
to the safety- first criterion.

Solution to 3:
To answer this question, note that P(RB < 3.75) = N(−0.90625). We can round 
0.90625 to 0.91 for use with tables of the standard normal cdf. First, we calculate 
N(−0.91) = 1 − N(0.91) = 1 − 0.8186 = 0.1814, or about 18.1%. Using a spread-
sheet function for the standard normal cdf on −0.90625 without rounding, we 
get 0.182402, or about 18.2%. The safety- first optimal portfolio has a roughly 
18% chance of not meeting a 3.75% return threshold. This can be seen in the 
following graphic, where Allocation B has the smallest area under the distribu-
tion curve to the left of 3.75%.
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Several points are worth noting. First, if the inputs were slightly different, 
we could get a different ranking. For example, if the mean return on B were 10% 
rather than 11%, Allocation A would be superior to B. Second, if meeting the 
3.75% return threshold were a necessity rather than a wish, C$830,000 in one 
year could be modeled as a liability. Fixed- income strategies, such as cash flow 
matching, could be used to offset or immunize the C$830,000 quasi- liability.

In many investment contexts besides Roy’s safety- first criterion, we use the normal 
distribution to estimate a probability. Another arena in which the normal distribution 
plays an important role is financial risk management. Financial institutions, such as 
investment banks, security dealers, and commercial banks, have formal systems to 
measure and control financial risk at various levels, from trading positions to the 
overall risk for the firm. Two mainstays in managing financial risk are value at risk 
(VaR) and stress testing/scenario analysis. Stress testing and scenario analysis refer 
to a set of techniques for estimating losses in extremely unfavorable combinations of 
events or scenarios. Value at risk (VaR) is a money measure of the minimum value of 
losses expected over a specified time period (for example, a day, a quarter, or a year) 
at a given level of probability (often 0.05 or 0.01). Suppose we specify a one- day time 
horizon and a level of probability of 0.05, which would be called a 95% one- day VaR. 
If this VaR equaled €5 million for a portfolio, there would be a 0.05 probability that 
the portfolio would lose €5 million or more in a single day (assuming our assumptions 
were correct). One of the basic approaches to estimating VaR, the variance–covariance 
or analytical method, assumes that returns follow a normal distribution.

LOGNORMAL DISTRIBUTION AND CONTINUOUS 
COMPOUNDING

6.1 The Lognormal Distribution 

 l. explain the relationship between normal and lognormal distributions and why 
the lognormal distribution is used to model asset prices

Closely related to the normal distribution, the lognormal distribution is widely used for 
modeling the probability distribution of share and other asset prices. For example, the 
lognormal distribution appears in the Black–Scholes–Merton option pricing model. 
The Black–Scholes–Merton model assumes that the price of the asset underlying the 
option is lognormally distributed.

A random variable Y follows a lognormal distribution if its natural logarithm, ln 
Y, is normally distributed. The reverse is also true: If the natural logarithm of random 
variable Y, ln Y, is normally distributed, then Y follows a lognormal distribution. 
If you think of the term lognormal as “the log is normal,” you will have no trouble 
remembering this relationship.

The two most noteworthy observations about the lognormal distribution are 
that it is bounded below by 0 and it is skewed to the right (it has a long right tail). 
Note these two properties in the graphs of the pdfs of two lognormal distributions 
in Exhibit 13. Asset prices are bounded from below by 0. In practice, the lognormal 
distribution has been found to be a usefully accurate description of the distribution 
of prices for many financial assets. However, the normal distribution is often a good 
approximation for returns. For this reason, both distributions are very important for 
finance professionals.

6

© CFA Institute. For candidate use only. Not for distribution.



Reading 4 ■ Common Probability Distributions270

Exhibit 13   Two Lognormal Distributions

00 4.54.50.50.5 1.01.0 1.51.5 2.02.0 2.52.5 3.03.0 3.53.5 4.04.0

Like the normal distribution, the lognormal distribution is completely described 
by two parameters. Unlike the other distributions we have considered, a lognormal 
distribution is defined in terms of the parameters of a different distribution. The 
two parameters of a lognormal distribution are the mean and standard deviation (or 
variance) of its associated normal distribution: the mean and variance of ln Y, given 
that Y is lognormal. Remember, we must keep track of two sets of means and stan-
dard deviations (or variances): the mean and standard deviation (or variance) of the 
associated normal distribution (these are the parameters) and the mean and standard 
deviation (or variance) of the lognormal variable itself.

To illustrate this relationship, we simulated 1,000 scenarios of yearly asset returns, 
assuming that returns are normally distributed with 7% mean and 12% standard 
deviation. For each scenario i, we converted the simulated continuously compounded 
returns (ri) to future asset prices with the formula Price(1 year later)i = $1 x exp(ri), 
where exp is the exponential function and assuming that the asset’s price is $1 today. 
In Exhibit 14, Panel A shows the distribution of the simulated returns together with 
the fitted normal pdf, whereas Panel B shows the distribution of the corresponding 
future asset prices together with the fitted lognormal pdf. Again, note that the lognor-
mal distribution of future asset prices is bounded below by 0 and has a long right tail.
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Exhibit 14   Simulated Returns (Normal PDF) and Asset Prices (Lognormal 
PDF)

A. Normal PDF
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B. Lognormal PDF
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The expressions for the mean and variance of the lognormal variable itself are 
challenging. Suppose a normal random variable X has expected value μ and variance 
σ2. Define Y = exp(X). Remember that the operation indicated by exp(X) or eX (where 
e ≈ 2.7183) is the opposite operation from taking logs. Because ln Y = ln [exp(X)] = X 
is normal (we assume X is normal), Y is lognormal. What is the expected value of Y 
= exp(X)? A guess might be that the expected value of Y is exp(μ). The expected value 
is actually exp(μ + 0.50σ2), which is larger than exp(μ) by a factor of exp(0.50 σ2) > 1. 
To get some insight into this concept, think of what happens if we increase σ2. The 
distribution spreads out; it can spread upward, but it cannot spread downward past 
0. As a result, the center of its distribution is pushed to the right: The distribution’s 
mean increases.
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The expressions for the mean and variance of a lognormal variable are summarized 
below, where μ and σ2 are the mean and variance of the associated normal distribution 
(refer to these expressions as needed, rather than memorizing them):

■■ Mean (μL) of a lognormal random variable = exp(μ + 0.50σ2).
■■ Variance (σL

2) of a lognormal random variable = exp(2μ + σ2) × [exp(σ2) − 1].

6.2 Continuously Compounded Rates of Return 

m calculate and interpret a continuously compounded rate of return, given a spe-
cific holding period return

We now explore the relationship between the distribution of stock return and stock 
price. In this section, we show that if a stock’s continuously compounded return is 
normally distributed, then future stock price is necessarily lognormally distributed. 
Furthermore, we show that stock price may be well described by the lognormal 
distribution even when continuously compounded returns do not follow a normal 
distribution. These results provide the theoretical foundation for using the lognormal 
distribution to model asset prices.

To outline the presentation that follows, we first show that the stock price at some 
future time T, ST, equals the current stock price, S0, multiplied by e raised to power 
r0,T, the continuously compounded return from 0 to T; this relationship is expressed 
as ST = S0exp(r0,T). We then show that we can write r0,T as the sum of shorter- term 
continuously compounded returns and that if these shorter- period returns are normally 
distributed, then r0,T is normally distributed (given certain assumptions) or approx-
imately normally distributed (not making those assumptions). As ST is proportional 
to the log of a normal random variable, ST is lognormal.

To supply a framework for our discussion, suppose we have a series of equally 
spaced observations on stock price: S0, S1, S2, . . ., ST. Current stock price, S0, is a 
known quantity and thus is nonrandom. The future prices (such as S1), however, are 
random variables. The price relative, S1/S0, is an ending price, S1, over a beginning 
price, S0; it is equal to 1 plus the holding period return on the stock from t = 0 to t = 1:

S1/S0 = 1 + R0,1.

For example, if S0 = $30 and S1 = $34.50, then S1/S0 = $34.50/$30 = 1.15. Therefore, 
R0,1 = 0.15, or 15%. In general, price relatives have the form

St+1/St = 1 + Rt,t+1,

where Rt,t+1 is the rate of return from t to t + 1.
An important concept is the continuously compounded return associated with a 

holding period return, such as R0,1. The continuously compounded return associated 
with a holding period return is the natural logarithm of 1 plus that holding period 
return, or equivalently, the natural logarithm of the ending price over the beginning 
price (the price relative). Note that here we are using lowercase r to refer specifically 
to continuously compounded returns. For example, if we observe a one- week holding 
period return of 0.04, the equivalent continuously compounded return, called the 
one- week continuously compounded return, is ln(1.04) = 0.039221; €1.00 invested for 
one week at 0.039221 continuously compounded gives €1.04, equivalent to a 4% one- 
week holding period return. The continuously compounded return from t to t + 1 is

rt,t+1 = ln(St+1/St) = ln(1 + Rt,t+1).  (6)

© CFA Institute. For candidate use only. Not for distribution.



Lognormal Distribution and Continuous Compounding 273

For our example, r0,1 = ln(S1/S0) = ln(1 + R0,1) = ln($34.50/$30) = ln(1.15) = 0.139762. 
Thus, 13.98% is the continuously compounded return from t = 0 to t = 1. The continu-
ously compounded return is smaller than the associated holding period return. If our 
investment horizon extends from t = 0 to t = T, then the continuously compounded 
return to T is

r0,T = ln(ST/S0).

Applying the function exp to both sides of the equation, we have exp(r0,T) = exp[ln(ST/
S0)] = ST/S0, so

ST = S0exp(r0,T).

We can also express ST/S0 as the product of price relatives:
ST/S0 = (ST/ST−1)(ST−1/ST−2) . . . (S1/S0).

Taking logs of both sides of this equation, we find that the continuously compounded 
return to time T is the sum of the one- period continuously compounded returns:

r0,T = rT−1,T + rT−2,T−1 + . . . + r0,1.  

Using holding period returns to find the ending value of a $1 investment involves 
the multiplication of quantities (1 + holding period return). Using continuously com-
pounded returns involves addition (as shown in Equation 7).

A key assumption in many investment applications is that returns are inde-
pendently and identically distributed (i.i.d.). Independence captures the proposition 
that investors cannot predict future returns using past returns. Identical distribution 
captures the assumption of stationarity, a property implying that the mean and vari-
ance of return do not change from period to period.

Assume that the one- period continuously compounded returns (such as r0,1) are 
i.i.d. random variables with mean μ and variance σ2 (but making no normality or other 
distributional assumption). Then,

E(r0,T) = E(rT−1,T) + E(rT−2,T−1) + . . . + E(r0,1) = μT  

(we add up μ for a total of T times), and
σ2(r0,T) = σ2T  

(as a consequence of the independence assumption). The variance of the T holding 
period continuously compounded return is T multiplied by the variance of the one- 
period continuously compounded return; also, σ(r0,T) = σ T . If the one- period 
continuously compounded returns on the right- hand side of Equation 7 are normally 
distributed, then the T holding period continuously compounded return, r0,T, is also 
normally distributed with mean μT and variance σ2T. This relationship is so because 
a linear combination of normal random variables is also normal. But even if the one- 
period continuously compounded returns are not normal, their sum, r0,T, is approx-
imately normal according to the central limit theorem. Now compare ST = S0exp(r0,T) 
to Y = exp(X), where X is normal and Y is lognormal (as we discussed previously). 
Clearly, we can model future stock price ST as a lognormal random variable because 
r0,T should be at least approximately normal. This assumption of normally distributed 
returns is the basis in theory for the lognormal distribution as a model for the distri-
bution of prices of shares and other assets.

Continuously compounded returns play a role in many asset pricing models, as well 
as in risk management. Volatility measures the standard deviation of the continuously 
compounded returns on the underlying asset; by convention, it is stated as an annu-
alized measure. In practice, we very often estimate volatility using a historical series 
of continuously compounded daily returns. We gather a set of daily holding period 

(7)

(8)

(9)
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returns and then use Equation 6 to convert them into continuously compounded daily 
returns. We then compute the standard deviation of the continuously compounded 
daily returns and annualize that number using Equation 9.

To compute the standard deviation of a set (or sample) of n returns, we sum the 
squared deviation of each return from the mean return and then divide that sum by 
n − 1. The result is the sample variance. Taking the square root of the sample variance 
gives the sample standard deviation. Annualizing is typically done on the basis of 250 
days in a year, the approximate number of days markets are open for trading. Thus if 
daily volatility were 0.01, we would state volatility (on an annual basis) as 0 01 250 0 1581. .= . 
Example 8 illustrates the estimation of volatility for the shares of Astra International.

EXAMPLE 8  

Volatility of Share Price
Suppose you are researching Astra International (Indonesia Stock Exchange: 
ASII) and are interested in Astra’s price action in a week in which international 
economic news had significantly affected the Indonesian stock market. You 
decide to use volatility as a measure of the variability of Astra shares during 
that week. The following shows closing prices during that week.

Astra International Daily Closing Prices

Day Closing Price (IDR)

Monday 6,950
Tuesday 7,000
Wednesday 6,850
Thursday 6,600
Friday 6,350

Use the data provided to do the following:

1 Estimate the volatility of Astra shares. (Annualize volatility on the basis of 
250 days in a year.)

2 Identify the probability distribution for Astra share prices if continuously 
compounded daily returns follow the normal distribution.

Solution to 1:
First, use Equation 6 to calculate the continuously compounded daily returns; 
then, find their standard deviation in the usual way. In calculating sample 
variance, to get sample standard deviation, the divisor is sample size minus 1.

ln(7,000/6,950) = 0.007168.
ln(6,850/7,000) = −0.021661.
ln(6,600/6,850) = −0.037179.
ln(6,350/6,600) = −0.038615.
Sum = −0.090287.
Mean = −0.022572.
Variance = 0.000452.
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Standard deviation = 0.021261.

The standard deviation of continuously compounded daily returns is 0.021261. 
Equation 9 states that � � r TT0,� � � . In this example, σ  is the sample standard 

deviation of one- period continuously compounded returns. Thus, σ  refers to 
0.021261. We want to annualize, so the horizon T corresponds to one year. 
Because σ  is in days, we set T equal to the number of trading days in a year 
(250).

We find that annualized volatility for Astra stock that week was 33.6%, cal-
culated as 0 021261 250 0 336165. .= .

Note that the sample mean, −0.022572, is a possible estimate of the mean, 
μ, of the continuously compounded one- period or daily returns. The sample 
mean can be translated into an estimate of the expected continuously com-
pounded annual return using Equation 8: �T � � � �0 022572 250.  (using 250 to 
be consistent with the calculation of volatility). But four observations are far 
too few to estimate expected returns. The variability in the daily returns over-
whelms any information about expected return in a series this short.

Solution to 2:
Astra share prices should follow the lognormal distribution if the continuously 
compounded daily returns on Astra shares follow the normal distribution.

We have shown that the distribution of stock price is lognormal, given certain 
assumptions. What are the mean and variance of ST if ST follows the lognormal dis-
tribution? Earlier we gave bullet- point expressions for the mean and variance of a 

lognormal random variable. In the bullet- point expressions, the � �  and 2  would refer, 
in the context of this discussion, to the mean and variance of the T horizon (not the 
one- period) continuously compounded returns (assumed to follow a normal distri-
bution), compatible with the horizon of ST. Related to the use of mean and variance 
(or standard deviation), previously we used those quantities to construct intervals in 
which we expect to find a certain percentage of the observations of a normally dis-
tributed random variable. Those intervals were symmetric about the mean. Can we 
state similar symmetric intervals for a lognormal random variable? Unfortunately, we 
cannot; because the lognormal distribution is not symmetric, such intervals are more 
complicated than for the normal distribution, and we will not discuss this specialist 
topic here.

STUDENT’S T-, CHI- SQUARE, AND F-DISTRIBUTIONS

7.1 Student’s t-Distribution 

n describe the properties of the Student’s t-distribution, and calculate and inter-
pret its degrees of freedom

To complete the review of probability distributions commonly used in finance, we 
discuss Student’s t-, chi- square, and F-distributions. Most of the time, these distribu-
tions are used to support statistical analyses, such as sampling, testing the statistical 
significance of estimated model parameters, or hypothesis testing. In addition, Student’s 

7
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t-distribution is also sometimes used to model asset returns in a manner similar to 
that of the normal distribution. However, since the t-distribution has “longer tails,” it 
may provide a more reliable, more conservative downside risk estimate.

The standard t-distribution is a symmetrical probability distribution defined by 
a single parameter known as degrees of freedom (df ), the number of independent 
variables used in defining sample statistics, such as variance, and the probability 
distributions they measure.

Each value for the number of degrees of freedom defines one distribution in this 
family of distributions. We will shortly compare t-distributions with the standard nor-
mal distribution, but first we need to understand the concept of degrees of freedom. 
We can do so by examining the calculation of the sample variance,
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Equation 10 gives the unbiased estimator of the sample variance that we use. The 
term in the denominator, n − 1, which is the sample size minus 1, is the number of 
degrees of freedom in estimating the population variance when using Equation 10. We 
also use n − 1 as the number of degrees of freedom for determining reliability factors 
based on the t-distribution. The term “degrees of freedom” is used because in a random 
sample, we assume that observations are selected independently of each other. The 
numerator of the sample variance, however, uses the sample mean. How does the use 
of the sample mean affect the number of observations collected independently for the 
sample variance formula? With a sample size of 10 and a mean of 10%, for example, 
we can freely select only 9 observations. Regardless of the 9 observations selected, 
we can always find the value for the 10th observation that gives a mean equal to 10%. 
From the standpoint of the sample variance formula, then, there are nine degrees 
of freedom. Given that we must first compute the sample mean from the total of n 
independent observations, only n − 1 observations can be chosen independently for 
the calculation of the sample variance. The concept of degrees of freedom comes up 
frequently in statistics, and you will see it often later in the CFA Program curriculum.

Suppose we sample from a normal distribution. The ratio z X n� �� � � �� �  is 

distributed normally with a mean of 0 and standard deviation of 1; however, the 
ratio t X s n� �� � � ��  follows the t-distribution with a mean of 0 and n − 1 degrees 

of freedom. The ratio represented by t is not normal because t is the ratio of two 
random variables, the sample mean and the sample standard deviation. The definition 
of the standard normal random variable involves only one random variable, the sample 
mean. As degrees of freedom increase (i.e., as sample size increases), however, the 
t-distribution approaches the standard normal distribution. Exhibit  15 shows the 
probability density functions for the standard normal distribution and two t-distri-
butions, one with df = 2 and one with df = 8.

(10)

© CFA Institute. For candidate use only. Not for distribution.



Student’s t-, Chi- Square, and F-Distributions 277

Exhibit 15   Student’s t-Distributions vs. Standard Normal Distribution

Normal Distribution

t (df = 2)t (df = 8)

–6–6 66–2–2–4–4 442200

Of the three distributions shown in Exhibit  15, the standard normal distribu-
tion has tails that approach zero faster than the tails of the two t-distributions. The 
t-distribution is also symmetrically distributed around its mean value of zero, just 
like the normal distribution. As the degrees of freedom increase, the t-distribution 
approaches the standard normal distribution. The t-distribution with df = 8 is closer 
to the standard normal distribution than the t-distribution with df = 2.

Beyond plus and minus four standard deviations from the mean, the area under 
the standard normal distribution appears to approach 0; both t-distributions, however, 
continue to show some area under each curve beyond four standard deviations. The 
t-distributions have fatter tails, but the tails of the t-distribution with df = 8 more 
closely resemble the normal distribution’s tails. As the degrees of freedom increase, 
the tails of the t-distribution become less fat.

Probabilities for the t-distribution can be readily computed with spreadsheets, 
statistical software, and programming languages. As an example of the latter, see the 
final sidebar at the end of this section for sample code in the R programming language.

7.2 Chi- Square and F-Distribution

o describe the properties of the chi- square distribution and the F-distribution, 
and calculate and interpret their degrees of freedom

The chi- square distribution, unlike the normal and t-distributions, is asymmetrical. 
Like the t-distribution, the chi- square distribution is a family of distributions. The 
chi- square distribution with k degrees of freedom is the distribution of the sum of 
the squares of k independent standard normally distributed random variables; hence, 
this distribution does not take on negative values. A different distribution exists for 
each possible value of degrees of freedom, n − 1 (n is sample size).

Like the chi- square distribution, the F-distribution is a family of asymmetrical 
distributions bounded from below by 0. Each F-distribution is defined by two values 
of degrees of freedom, called the numerator and denominator degrees of freedom.

The relationship between the chi- square and F-distributions is as follows: If χ
1

2  is 

one chi- square random variable with m degrees of freedom and χ2
2  is another chi- 

square random variable with n degrees of freedom, then F m n� � � � �� �1
2

2
2  follows an 

F-distribution with m numerator and n denominator degrees of freedom.
Chi- square and F-distributions are asymmetric, and as shown in Exhibit 16, the 

domain of their pdfs are positive numbers. Like Student’s t-distribution, as the degrees 
of freedom of the chi- square distribution increase, the shape of its pdf becomes more 
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similar to a bell curve (see Panel A). For the F-distribution, as both the numerator 
(df1) and the denominator (df2) degrees of freedom increase, the density function will 
also become more bell curve–like (see Panel B).

Exhibit 16   PDFs of Chi- Square and F-Distributions

A. Chi-Square Distributions
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As for typical investment applications, Student’s t, chi- square, and F-distributions 
are the basis for test statistics used in performing various types of hypothesis tests on 
portfolio returns, such as those summarized in Exhibit 17.

© CFA Institute. For candidate use only. Not for distribution.



Student’s t-, Chi- Square, and F-Distributions 279

Exhibit 17   Student’s t, Chi- Square, and F-Distributions: Basis for Hypothesis 
Tests of Investment Returns

Distribution Test Statistic Hypothesis Tests of Returns

Student’s t t-Statistic Tests of a single population mean, of differences 
between two population means, of mean differ-
ence between paired (dependent) populations, and 
of population correlation coefficient

Chi- square Chi- square 
statistic

Test of variance of a normally distributed 
population

F F-statistic Test of equality of variances of two normally 
distributed populations from two independent 
random samples

EXAMPLE 9  

Probabilities Using Student’s-t, Chi- Square, and 
F-Distributions

1 Of the distributions we have covered in this reading, which can take val-
ues that are only positive numbers (i.e., no negative values)?

2 Interpret the degrees of freedom for a chi- square distribution, and 
describe how a larger value of df affects the shape of the chi- square pdf.

3 Generate cdf tables in Excel for values 1, 2, and 3 for the following dis-
tributions: standard normal, Student’s t- (df = 5), chi- square (df = 5), and 
F-distribution (df1 = 5, df2 = 1). Then, calculate the distance from the 
mean for probability (p) = 90%, 95%, and 99% for each distribution.

4 You fit a Student’s t-distribution to historically observed returns of stock 
market index ABC. Your best fit comes with five degrees of freedom. 
Compare this Student’s t-distribution (df = 5) to a standard normal distri-
bution on the basis of your answer to Question 3.

Solution to 1:
Of the probability distributions covered in this reading, the domains of the pdfs of 
the lognormal, the chi- square, and the F-distribution are only positive numbers.

Solution to 2:
A chi- square distribution with k degrees of freedom is the distribution of the 
sum of the squares of k independent standard normally distributed random 
variables. The greater the degrees of freedom, the more symmetrical and bell 
curve–like the pdf becomes.

Solution to 3:
In Excel, we can calculate cdfs using the NORM.S.DIST(value,1), 
T.DIST(value,DF,1), CHISQ.DIST(value,DF,1), and F.DIST(value,DF1,DF2,1) 
functions for the standard normal, Student’s t-, chi- square, and F-distributions, 
respectively. At the end of this question set, we also show code snippets in the 
R language for generating cdfs for the requested values. For values 1, 2, and 3, 
the following are the results using the Excel functions:
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CDF Values Using Different Probability Distributions

Value Normal
Student’s t 

(df = 5)
Chi- Square 

(df = 5)

F 
(df1 = 5, 
df2 = 1)

1 84.1% 81.8% 3.7% 36.3%
2 97.7% 94.9% 15.1% 51.1%
3 99.9% 98.5% 30.0% 58.9%

To calculate distances from the mean given probability p, we must use the 
inverse of the distribution functions: NORM.S.INV(p), T.INV(p,DF), CHISQ.
INV(p,DF), and F.INV(p,DF1,DF2), respectively. At the end of this question set, 
we also show code snippets in the R language for calculating distances from the 
mean for the requested probabilities. The results using the inverse functions and 
the requested probabilities are as follows:

Distance from the Mean for a Given Probability (p)

Probability Normal
Student’s t 

(df = 5)
Chi- Square 

(df = 5)

F 
(df1 = 5, 
df2 = 1)

90% 1.28 1.48 9.24 57.24
95% 1.64 2.02 11.07 230.16
99% 2.33 3.36 15.09 5,763.65

Solution to 4:
Student’s t-distribution with df of 5 has longer tails than the standard normal 
distribution. For probabilities 90%, 95%, and 99%, such t-distributed random 
variables would fall farther away from their mean (1.48, 2.02, and 3.36 standard 
deviations, respectively) than a normally distributed random variable (1.28, 1.64, 
and 2.33 standard deviations, respectively).

R CODE FOR PROBABILITIES INVOLVING STUDENT’S T-, 
CHI- SQUARE, AND F-DISTRIBUTIONS

For those of you with a knowledge of (or interest in learning) readily accessible computer 
code to find probabilities involving Student’s t-, chi- square, and F-distributions, you can try 
out the following program. Specifically, this program uses code in the R language to solve 
for the answers to Example 9, which you have just completed. Good luck and have fun!
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MONTE CARLO SIMULATION

p describe Monte Carlo simulation

After gaining an understanding of probability distributions, we now learn about a 
technique in which probability distributions play an integral role. The technique is 
called Monte Carlo simulation, and in finance it involves the use of computer soft-
ware to represent the operation of a complex financial system. A characteristic feature 
of Monte Carlo simulation is the generation of a large number of random samples 
from a specified probability distribution or distributions to represent the role of risk 
in the system.

Monte Carlo simulation is widely used to estimate risk and return in investment 
applications. In this setting, we simulate the portfolio’s profit and loss performance 
for a specified time horizon. Repeated trials within the simulation (each trial involving 
a draw of random observations from a probability distribution) produce a simulated 
frequency distribution of portfolio returns from which performance and risk mea-
sures are derived.

Another important use of Monte Carlo simulation in investments is as a tool for 
valuing complex securities for which no analytic pricing formula is available. For 
other securities, such as mortgage- backed securities with complex embedded options, 

8
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Monte Carlo simulation is also an important modeling resource. Since we control the 
assumptions when we carry out a simulation, we can run a model for valuing such 
securities through a Monte Carlo simulation to examine the model’s sensitivity to a 
change in key assumptions.

To understand the technique of Monte Carlo simulation, we present the process as 
a series of steps; these can be viewed as providing an overview rather than a detailed 
recipe for implementing a Monte Carlo simulation in its many varied applications. 
To illustrate the steps, we use Monte Carlo simulation to value a contingent claim 
security (a security whose value is based on some other underlying security) for which 
no analytic pricing formula is available. For our purposes, such a contingent claim 
security has a value at its maturity equal to the difference between the underlying stock 
price at that maturity and the average stock price during the life of the contingent 
claim or $0, whichever is greater. For instance, if the final underlying stock price is 
$34 and the average value over the life of the claim is $31, the value of the contingent 
claim at its maturity is $3 (the greater of $34 − $31 = $3 and $0).

Assume that the maturity of the claim is one year from today; we will simulate 
stock prices in monthly steps over the next 12 months and will generate 1,000 sce-
narios to evaluate this claim. The payoff diagram of this contingent claim security is 
depicted in Panel A of Exhibit 18, a histogram of simulated average and final stock 
prices is shown in Panel B, and a histogram of simulated payoffs of the contingent 
claim is presented in Panel C.

The payoff diagram (Panel A) is a snapshot of the contingent claim at maturity. If 
the stock’s final price is less than or equal to its average over the life of the contingent 
claim, then the payoff would be zero. However, if the final price exceeds the average 
price, the payoff is equal to this difference. Panel B shows histograms of the simulated 
final and average stock prices. Note that the simulated final price distribution is wider 
than the simulated average price distribution. Also, note that the contingent claim’s 
value depends on the difference between the final and average stock prices, which 
cannot be directly inferred from these histograms.
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Exhibit 18   Payoff Diagram, Histogram of Simulated Average and Final 
Stock Prices, and Histogram of Simulated Payoffs for Contingent 
Claim

Payoff (USD)

A. Contingent Claim Payoff Diagram
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B. Histogram of Simulated Average and Final Stock Prices
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Finally, Panel C shows the histogram of the contingent claim’s simulated payoffs. 
In 654 of 1,000 total trials, the final stock price was less than or equal to the average 
price, so in 65.4% of the trials the contingent claim paid off zero. In the remaining 
34.6% of the trials, however, the claim paid the positive difference between the final 
and average prices, with the maximum payoff being $11.
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The process flowchart in Exhibit 19 shows the steps for implementing the Monte 
Carlo simulation for valuing this contingent claim. Steps 1 through 3 of the process 
describe specifying the simulation; Steps 4 through 7 describe running the simulation.

Exhibit 19   Steps in Implementing the Monte Carlo Simulation

Step 1: Specify the quantity of interest; (e.g., value 
of the contingent claim).

Specify the
simulation

Run the
simulation

over the
specified
number of

trials

Step 2: Specify a time grid: K sub-periods with Δt 
increment for the full time horizon.

Step 3: Specify distributional assumptions 
for the key risk factors.

Step 4: Draw standard normal random numbers for 
each key risk factor over each of the K sub-periods.

Step 5: Convert the standard normal random numbers 
to stock prices, average stock price, and other 

relevant risk factors.

Step 6: Calculate the value and the present 
value of the contingent claim payoff.

Step 7: Repeat Steps 4-6 over the specified number of 
trials. Then, calculate summary value (e.g., average of 

the present values of the contingent claim payoff).

The mechanics of implementing the Monte Carlo simulation for valuing the con-
tingent claim using the seven- step process are described as follows:

1 Specify the quantity of interest in terms of underlying variables. Here the quan-
tity of interest is the contingent claim value, and the underlying variable is the 
stock price. Then, specify the starting value(s) of the underlying variable(s).

 We use CiT to represent the value of the claim at maturity, T. The subscript i 
in CiT indicates that CiT is a value resulting from the ith simulation trial, each 
simulation trial involving a drawing of random values (an iteration of Step 4).

2 Specify a time grid. Take the horizon in terms of calendar time and split it into 
a number of subperiods—say, K in total. Calendar time divided by the number 
of subperiods, K, is the time increment, Δt. In our example, calendar time is one 
year and K is 12, so Δt equals one month.

3 Specify distributional assumptions for the key risk factors that drive the 
underlying variables. For example, stock price is the underlying variable for the 
contingent claim, so we need a model for stock price movement. We choose the 
following model for changes in stock price, where Zk stands for the standard 
normal random variable:

ΔStock price = (μ × Prior stock price × Δt) + (σ × Prior stock price × Zk).
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 The term Zk is the key risk factor in the simulation. Through our choice of μ 
(mean) and σ (standard deviation), we control the distribution of the stock price 
variable. Although this example has one key risk factor, a given simulation may 
have multiple key risk factors.

4 Using a computer program or spreadsheet function, draw K random values 
of each risk factor. In our example, the spreadsheet function would produce 
a draw of K (= 12) values of the standard normal variable Zk: Z1, Z2, Z3, . . ., 
ZK. We will discuss generating standard normal random numbers (or, in fact, 
random numbers with any kind of distribution) after describing the sequence of 
simulation steps.

5 Convert the standard normal random numbers generated in Step 4 into stock 
price changes (ΔStock price) by using the model of stock price dynamics from 
Step 3. The result is K observations on possible changes in stock price over the 
K subperiods (remember, K = 12). An additional calculation is needed to con-
vert those changes into a sequence of K stock prices, with the initial stock price 
as the starting value over the K subperiods. Another calculation produces the 
average stock price during the life of the contingent claim (the sum of K stock 
prices divided by K).

6 Compute the value of the contingent claim at maturity, CiT, and then calculate 
its present value, Ci0, by discounting this terminal value using an appropriate 
interest rate as of today. (The subscript i in Ci0 stands for the ith simulation 
trial, as it does in CiT.) We have now completed one simulation trial.

7 Iteratively go back to Step 4 until the specified number of trials, I, is completed. 
Finally, produce summary values and statistics for the simulation. The quan-
tity of interest in our example is the mean value of Ci0 for the total number of 
simulation trials (I = 1,000). This mean value is the Monte Carlo estimate of the 
value of our contingent claim.

In Step 4 of our example, a computer function produced a set of random obser-
vations on a standard normal random variable. Recall that for a uniform distribution, 
all possible numbers are equally likely. The term random number generator refers 
to an algorithm that produces uniformly distributed random numbers between 0 
and 1. In the context of computer simulations, the term random number refers to 
an observation drawn from a uniform distribution. For other distributions, the term 
“random observation” is used in this context.

It is a remarkable fact that random observations from any distribution can be 
produced using the uniform random variable with endpoints 0 and 1. The technique 
for producing random observations is known as the inverse transformation method. 
As a generalist, you do not need to address the technical details of converting random 
numbers into random observations, but you do need to know that random observations 
from any distribution can be generated using a uniform random variable.

Exhibit 20 provides a visual representation of the workings of the inverse trans-
formation method. In essence, the randomly generated uniform number (0.30) lying 
on the continuous uniform probability density function, pdf, bounded by 0 and 1 
(Panel A), is mapped onto the inverted cumulative density function, cdf, bounded by 
0 and 1, of any distribution from which random observations are desired; here, we 
use the standard normal distribution (Panel B). The point on the given distribution’s 
cdf is then mapped onto its pdf (Panel C), and the random observation is thereby 
identified (−0.5244). Note that in actuality, the random observation can be read off 
the y-axis in Panel B, but we include Panel C here to reinforce the intuition on how 
inverse transformation works. This method for generating random observations for 
the standard normal distribution is the same one used in the Monte Carlo simula-
tion–based valuation of the contingent claim just described.
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Exhibit 20   Inverse Transformation: Random Number from Uniform 
Distribution (PDF) Mapped to CDF and PDF of Standard Normal 
Distribution to Produce Random Observation
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In Example 10, we continue with the application of Monte Carlo simulation to 
value another type of contingent claim.
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EXAMPLE 10  

Valuing a Lookback Contingent Claim Using Monte Carlo 
Simulation
A standard lookback contingent claim on stock has a value at maturity equal 
to (Value of the stock at maturity − Minimum value of stock during the life of 
the claim prior to maturity) or $0, whichever is greater. If the minimum value 
reached prior to maturity was $20.11 and the value of the stock at maturity is 
$23, for example, the contingent claim is worth $23 − $20.11 = $2.89.

Briefly discuss how you might use Monte Carlo simulation in valuing a 
lookback contingent claim.

Solution:
We previously described how to use Monte Carlo simulation to value a certain 
type of contingent claim. Just as we can calculate the average value of the stock 
over a simulation trial to value that claim, for a lookback contingent claim, we 
can also calculate the minimum value of the stock over a simulation trial. Then, 
for a given simulation trial, we can calculate the terminal value of the claim, given 
the minimum value of the stock for the simulation trial. We can then discount 
this terminal value back to the present to get the value of the claim today (t = 
0). The average of these t = 0 values over all simulation trials is the Monte Carlo 
simulated value of the lookback contingent claim.

Finally, it is important to note that Monte Carlo simulation is a complement to 
analytical methods. It provides only statistical estimates, not exact results. Analytical 
methods, where available, provide more insight into cause- and- effect relationships. 
However, as financial product innovations proceed, the applications for Monte Carlo 
simulation in investment management continue to grow.

SUMMARY
In this reading, we have presented the most frequently used probability distributions 
in investment analysis and Monte Carlo simulation.

■■ A probability distribution specifies the probabilities of the possible outcomes of 
a random variable.

■■ The two basic types of random variables are discrete random variables and con-
tinuous random variables. Discrete random variables take on at most a count-
able number of possible outcomes that we can list as x1, x2, . . . . In contrast, we 
cannot describe the possible outcomes of a continuous random variable Z with 
a list z1, z2, . . ., because the outcome (z1 + z2)/2, not in the list, would always be 
possible.

■■ The probability function specifies the probability that the random variable will 
take on a specific value. The probability function is denoted p(x) for a discrete 
random variable and f(x) for a continuous random variable. For any probability 
function p(x), 0 ≤ p(x) ≤ 1, and the sum of p(x) over all values of X equals 1.

■■ The cumulative distribution function, denoted F(x) for both continuous and 
discrete random variables, gives the probability that the random variable is less 
than or equal to x.
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■■ The discrete uniform and the continuous uniform distributions are the distribu-
tions of equally likely outcomes.

■■ The binomial random variable is defined as the number of successes in n 
Bernoulli trials, where the probability of success, p, is constant for all trials and 
the trials are independent. A Bernoulli trial is an experiment with two out-
comes, which can represent success or failure, an up move or a down move, or 
another binary (twofold) outcome.

■■ A binomial random variable has an expected value or mean equal to np and 
variance equal to np(1 − p).

■■ A binomial tree is the graphical representation of a model of asset price dynam-
ics in which, at each period, the asset moves up with probability p or down with 
probability (1 − p). The binomial tree is a flexible method for modeling asset 
price movement and is widely used in pricing options.

■■ The normal distribution is a continuous symmetric probability distribution that 
is completely described by two parameters: its mean, μ, and its variance, σ2.

■■ A univariate distribution specifies the probabilities for a single random variable. 
A multivariate distribution specifies the probabilities for a group of related 
random variables.

■■ To specify the normal distribution for a portfolio when its component securities 
are normally distributed, we need the means, the standard deviations, and all 
the distinct pairwise correlations of the securities. When we have those statis-
tics, we have also specified a multivariate normal distribution for the securities.

■■ For a normal random variable, approximately 68% of all possible outcomes are 
within a one standard deviation interval about the mean, approximately 95% 
are within a two standard deviation interval about the mean, and approximately 
99% are within a three standard deviation interval about the mean.

■■ A normal random variable, X, is standardized using the expression Z = (X 
− μ)/σ, where μ and σ are the mean and standard deviation of X. Generally, we 
use the sample mean, X , as an estimate of μ and the sample standard deviation, 
s, as an estimate of σ in this expression.

■■ The standard normal random variable, denoted Z, has a mean equal to 0 and 
variance equal to 1. All questions about any normal random variable can be 
answered by referring to the cumulative distribution function of a standard 
normal random variable, denoted N(x) or N(z).

■■ Shortfall risk is the risk that portfolio value or portfolio return will fall below 
some minimum acceptable level over some time horizon.

■■ Roy’s safety- first criterion, addressing shortfall risk, asserts that the optimal 
portfolio is the one that minimizes the probability that portfolio return falls 
below a threshold level. According to Roy’s safety- first criterion, if returns are 
normally distributed, the safety- first optimal portfolio P is the one that maxi-
mizes the quantity [E(RP) − RL]/σP, where RL is the minimum acceptable level 
of return.

■■ A random variable follows a lognormal distribution if the natural logarithm 
of the random variable is normally distributed. The lognormal distribution is 
defined in terms of the mean and variance of its associated normal distribution. 
The lognormal distribution is bounded below by 0 and skewed to the right (it 
has a long right tail).

■■ The lognormal distribution is frequently used to model the probability distribu-
tion of asset prices because it is bounded below by zero.

■■ Continuous compounding views time as essentially continuous or unbroken; 
discrete compounding views time as advancing in discrete finite intervals.
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■■ The continuously compounded return associated with a holding period is the 
natural log of 1 plus the holding period return, or equivalently, the natural log 
of ending price over beginning price.

■■ If continuously compounded returns are normally distributed, asset prices 
are lognormally distributed. This relationship is used to move back and forth 
between the distributions for return and price. Because of the central limit the-
orem, continuously compounded returns need not be normally distributed for 
asset prices to be reasonably well described by a lognormal distribution.

■■ Student’s t-, chi- square, and F-distributions are used to support statistical anal-
yses, such as sampling, testing the statistical significance of estimated model 
parameters, or hypothesis testing.

■■ The standard t-distribution is a symmetrical probability distribution defined by 
degrees of freedom (df ) and characterized by fat tails. As df increase, the t-dis-
tribution approaches the standard normal distribution.

■■ The chi- square distribution is asymmetrical, defined by degrees of freedom, and 
with k df is the distribution of the sum of the squares of k independent standard 
normally distributed random variables, so it does not take on negative values. A 
different distribution exists for each value of df, n − 1.

■■ The F-distribution is a family of asymmetrical distributions bounded from 
below by 0. Each F-distribution is defined by two values of degrees of freedom, 

the numerator df and the denominator df. If χ
1

2  is one chi- square random 

variable with m df and χ2
2  is another chi- square random variable with n df, 

then F m n� � � � �� �1
2

2
2  follows an F-distribution with m numerator df and n 

denominator df.
■■ Monte Carlo simulation involves the use of a computer to represent the opera-

tion of a complex financial system. A characteristic feature of Monte Carlo sim-
ulation is the generation of a large number of random samples from specified 
probability distributions to represent the operation of risk in the system. Monte 
Carlo simulation is used in planning, in financial risk management, and in valu-
ing complex securities. Monte Carlo simulation is a complement to analytical 
methods but provides only statistical estimates, not exact results.

■■ Random observations from any distribution can be produced using the uniform 
random variable with endpoints 0 and 1 via the inverse transformation method. 
The randomly generated uniform random number is mapped onto the inverted 
cdf of any distribution from which random observations are desired. The point 
on the given distribution’s cdf is then mapped onto its pdf, and the random 
observation is identified.
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PRACTICE PROBLEMS

1 A European put option on stock conveys the right to sell the stock at a pre-
specified price, called the exercise price, at the maturity date of the option. The 
value of this put at maturity is (exercise price – stock price) or $0, whichever is 
greater. Suppose the exercise price is $100 and the underlying stock trades in 
increments of $0.01. At any time before maturity, the terminal value of the put 
is a random variable.
A Describe the distinct possible outcomes for terminal put value. (Think of the 

put’s maximum and minimum values and its minimum price increments.)
B Is terminal put value, at a time before maturity, a discrete or continuous 

random variable?
C Letting Y stand for terminal put value, express in standard notation the 

probability that terminal put value is less than or equal to $24. No calcula-
tions or formulas are necessary.

2 Define the term “binomial random variable.” Describe the types of problems for 
which the binomial distribution is used.

3 The value of the cumulative distribution function F(x), where x is a particular 
outcome, for a discrete uniform distribution:
A sums to 1.
B lies between 0 and 1.
C decreases as x increases.

4 For a binomial random variable with five trials and a probability of success on 
each trial of 0.50, the distribution will be:
A skewed.
B uniform.
C symmetric.

5 In a discrete uniform distribution with 20 potential outcomes of integers 1–20, 
the probability that X is greater than or equal to 3 but less than 6, P(3 ≤ X < 6), 
is:
A 0.10.
B 0.15.
C 0.20.

6 Over the last 10 years, a company’s annual earnings increased year over year 
seven times and decreased year over year three times. You decide to model 
the number of earnings increases for the next decade as a binomial random 
variable.
A What is your estimate of the probability of success, defined as an increase in 

annual earnings?
 For Parts B, C, and D of this problem, assume the estimated probability is the 

actual probability for the next decade.
B What is the probability that earnings will increase in exactly 5 of the next 10 

years?
C Calculate the expected number of yearly earnings increases during the next 

10 years.
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D Calculate the variance and standard deviation of the number of yearly earn-
ings increases during the next 10 years.

E The expression for the probability function of a binomial random variable 
depends on two major assumptions. In the context of this problem, what 
must you assume about annual earnings increases to apply the binomial 
distribution in Part B? What reservations might you have about the validity 
of these assumptions?

7 A portfolio manager annually outperforms her benchmark 60% of the time. 
Assuming independent annual trials, what is the probability that she will out-
perform her benchmark four or more times over the next five years?
A 0.26
B 0.34
C 0.48

8 You are examining the record of an investment newsletter writer who claims 
a 70% success rate in making investment recommendations that are profitable 
over a one- year time horizon. You have the one- year record of the newsletter’s 
seven most recent recommendations. Four of those recommendations were 
profitable. If all the recommendations are independent and the newsletter writ-
er’s skill is as claimed, what is the probability of observing four or fewer profit-
able recommendations out of seven in total?

9 You are forecasting sales for a company in the fourth quarter of its fiscal year. 
Your low- end estimate of sales is €14 million, and your high- end estimate is 
€15 million. You decide to treat all outcomes for sales between these two values 
as equally likely, using a continuous uniform distribution.
A What is the expected value of sales for the fourth quarter?
B What is the probability that fourth- quarter sales will be less than or equal to 

€14,125,000?
10 State the approximate probability that a normal random variable will fall within 

the following intervals:
A Mean plus or minus one standard deviation.
B Mean plus or minus two standard deviations.
C Mean plus or minus three standard deviations.

11 If the probability that a portfolio outperforms its benchmark in any quarter is 
0.75, the probability that the portfolio outperforms its benchmark in three or 
fewer quarters over the course of a year is closest to:
A 0.26
B 0.42
C 0.68

12 In futures markets, profits or losses on contracts are settled at the end of each 
trading day. This procedure is called marking to market or daily resettlement. 
By preventing a trader’s losses from accumulating over many days, marking to 
market reduces the risk that traders will default on their obligations. A futures 
markets trader needs a liquidity pool to meet the daily mark to market. If 
liquidity is exhausted, the trader may be forced to unwind his position at an 
unfavorable time.

 Suppose you are using financial futures contracts to hedge a risk in your 
portfolio. You have a liquidity pool (cash and cash equivalents) of λ dollars per 
contract and a time horizon of T trading days. For a given size liquidity pool, λ, 
Kolb, Gay, and Hunter developed an expression for the probability stating that 
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you will exhaust your liquidity pool within a T-day horizon as a result of the 
daily marking to market. Kolb et al. assumed that the expected change in 
futures price is 0 and that futures price changes are normally distributed. With 
σ representing the standard deviation of daily futures price changes, the 
standard deviation of price changes over a time horizon to day T is σ T , given 
continuous compounding. With that background, the Kolb et al. expression is

Probability of exhausting liquidity pool = 2[1 – N(x)],

 where x T� � �� � . Here, x is a standardized value of λ. N(x) is the standard 

normal cumulative distribution function. For some intuition about 1 – N(x) in 
the expression, note that the liquidity pool is exhausted if losses exceed the size 
of the liquidity pool at any time up to and including T; the probability of that 
event happening can be shown to be proportional to an area in the right tail of 
a standard normal distribution, 1 – N(x).

 Using the Kolb et al. expression, answer the following questions:
A Your hedging horizon is five days, and your liquidity pool is $2,000 per con-

tract. You estimate that the standard deviation of daily price changes for the 
contract is $450. What is the probability that you will exhaust your liquidity 
pool in the five- day period?

B Suppose your hedging horizon is 20 days but all the other facts given in 
Part A remain the same. What is the probability that you will exhaust your 
liquidity pool in the 20- day period?

13 Which of the following is characteristic of the normal distribution?
A Asymmetry
B Kurtosis of 3
C Definitive limits or boundaries

14 Which of the following assets most likely requires the use of a multivariate dis-
tribution for modeling returns?
A A call option on a bond
B A portfolio of technology stocks
C A stock in a market index

15 The total number of parameters that fully characterizes a multivariate normal 
distribution for the returns on two stocks is:
A 3.
B 4.
C 5.

16 A client has a portfolio of common stocks and fixed- income instruments 
with a current value of £1,350,000. She intends to liquidate £50,000 from the 
portfolio at the end of the year to purchase a partnership share in a business. 
Furthermore, the client would like to be able to withdraw the £50,000 without 
reducing the initial capital of £1,350,000. The following table shows four alter-
native asset allocations.
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Mean and Standard Deviation for Four Allocations (in 
Percent)

A B C D

Expected annual return 16 12 10 9
Standard deviation of return 24 17 12 11

 Address the following questions (assume normality for Parts B and C):
A Given the client’s desire not to invade the £1,350,000 principal, what is the 

shortfall level, RL? Use this shortfall level to answer Part B.
B According to the safety- first criterion, which of the allocations is the best?
C What is the probability that the return on the safety- first optimal portfolio 

will be less than the shortfall level, RL?
17 A portfolio has an expected mean return of 8% and standard deviation of 14%. 

The probability that its return falls between 8% and 11% is closest to:
A 8.5%.
B 14.8%.
C 58.3%.

18 A portfolio has an expected return of 7%, with a standard deviation of 13%. For 
an investor with a minimum annual return target of 4%, the probability that the 
portfolio return will fail to meet the target is closest to:
A 33%.
B 41%.
C 59%.

19 A Define Monte Carlo simulation, and explain its use in investment 
management.

B Compared with analytical methods, what are the strengths and weaknesses 
of Monte Carlo simulation for use in valuing securities?

20 Which of the following is a continuous random variable?
A The value of a futures contract quoted in increments of $0.05
B The total number of heads recorded in 1 million tosses of a coin
C The rate of return on a diversified portfolio of stocks over a three- month 

period
21 X is a discrete random variable with possible outcomes X = {1, 2, 3, 4}. Three 

functions—f(x), g(x), and h(x)—are proposed to describe the probabilities of the 
outcomes in X.

Probability Function

X = x f(x) = P(X = x) g(x) = P(X = x) h(x) = P(X = x)

1 −0.25 0.20 0.20
2 0.25 0.25 0.25
3 0.50 0.50 0.30
4 0.25 0.05 0.35

 The conditions for a probability function are satisfied by:
A f(x).
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B g(x).
C h(x).

22 The cumulative distribution function for a discrete random variable is shown in 
the following table.

X = x
Cumulative Distribution Function 

F(x) = P(X ≤ x) 

1 0.15
2 0.25
3 0.50
4 0.60
5 0.95
6 1.00

 The probability that X will take on a value of either 2 or 4 is closest to:
A 0.20.
B 0.35.
C 0.85.

23 Which of the following events can be represented as a Bernoulli trial?
A The flip of a coin
B The closing price of a stock
C The picking of a random integer between 1 and 10

24 The weekly closing prices of Mordice Corporation shares are as follows:

Date Closing Price (€)

1 August 112
8 August 160
15 August 120

 The continuously compounded return of Mordice Corporation shares for the 
period August 1 to August 15 is closest to:
A 6.90%.
B 7.14%.
C 8.95%.

25 A stock is priced at $100.00 and follows a one- period binomial process with 
an up move that equals 1.05 and a down move that equals 0.97. If 1 million 
Bernoulli trials are conducted and the average terminal stock price is $102.00, 
the probability of an up move (p) is closest to:
A 0.375.
B 0.500.
C 0.625.

26 A call option on a stock index is valued using a three- step binomial tree with an 
up move that equals 1.05 and a down move that equals 0.95. The current level 
of the index is $190, and the option exercise price is $200. If the option value 
is positive when the stock price exceeds the exercise price at expiration and $0 
otherwise, the number of terminal nodes with a positive payoff is:
A one.
B two.
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C three.
27 A random number between zero and one is generated according to a continu-

ous uniform distribution. What is the probability that the first number gener-
ated will have a value of exactly 0.30?
A 0%
B 30%
C 70%

28 A Monte Carlo simulation can be used to:
A directly provide precise valuations of call options.
B simulate a process from historical records of returns.
C test the sensitivity of a model to changes in assumptions—for example, on 

distributions of key variables.
29 A limitation of Monte Carlo simulation is:

A its failure to do “what if ” analysis.
B that it requires historical records of returns.
C its inability to independently specify cause- and- effect relationships.

30 Which parameter equals zero in a normal distribution?
A Kurtosis
B Skewness
C Standard deviation

31 An analyst develops the following capital market projections.

Stocks Bonds

Mean Return 10% 2%
Standard Deviation 15% 5%

 Assuming the returns of the asset classes are described by normal distributions, 
which of the following statements is correct?
A Bonds have a higher probability of a negative return than stocks.
B On average, 99% of stock returns will fall within two standard deviations of 

the mean.
C The probability of a bond return less than or equal to 3% is determined 

using a Z-score of 0.25.
32 A client holding a £2,000,000 portfolio wants to withdraw £90,000 in one year 

without invading the principal. According to Roy’s safety- first criterion, which 
of the following portfolio allocations is optimal?

Allocation A Allocation B Allocation C

Expected annual return 6.5% 7.5% 8.5%
Standard deviation of returns 8.35% 10.21% 14.34%

A Allocation A
B Allocation B
C Allocation C

33 In contrast to normal distributions, lognormal distributions:
A are skewed to the left.
B have outcomes that cannot be negative.
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C are more suitable for describing asset returns than asset prices.
34 The lognormal distribution is a more accurate model for the distribution of 

stock prices than the normal distribution because stock prices are:
A symmetrical.
B unbounded.
C non- negative.

35 The price of a stock at t = 0 is $208.25 and at t = 1 is $186.75. The continuously 
compounded rate of return for the stock from t = 0 to t = 1 is closest to:
A –10.90%.
B –10.32%.
C 11.51%.

36 Which one of the following statements about Student’s t-distribution is false?
A It is symmetrically distributed around its mean value, like the normal 

distribution.
B It has shorter (i.e., thinner) tails than the normal distribution.
C As its degrees of freedom increase, Student’s t-distribution approaches the 

normal distribution.
37 Which one of the following statements concerning chi- square and 

F-distributions is false?
A They are both asymmetric distributions.
B As their degrees of freedom increase, the shapes of their pdfs become more 

bell curve–like.
C The domains of their pdfs are positive and negative numbers.
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SOLUTIONS
1 A The put’s minimum value is $0. The put’s value is $0 when the stock price 

is at or above $100 at the maturity date of the option. The put’s maximum 
value is $100 = $100 (the exercise price) − $0 (the lowest possible stock 
price). The put’s value is $100 when the stock is worthless at the option’s 
maturity date. The put’s minimum price increments are $0.01. The possible 
outcomes of terminal put value are thus $0.00, $0.01, $0.02, . . . , $100.

B The price of the underlying has minimum price fluctuations of $0.01: These 
are the minimum price fluctuations for terminal put value. For example, if 
the stock finishes at $98.20, the payoff on the put is $100 – $98.20 = $1.80. 
We can specify that the nearest values to $1.80 are $1.79 and $1.81. With a 
continuous random variable, we cannot specify the nearest values. So, we 
must characterize terminal put value as a discrete random variable.

C The probability that terminal put value is less than or equal to $24 is P(Y ≤ 
24), or F(24) in standard notation, where F is the cumulative distribution 
function for terminal put value.

2 A binomial random variable is defined as the number of successes in n 
Bernoulli trials (a trial that produces one of two outcomes). The binomial distri-
bution is used to make probability statements about a record of successes and 
failures or about anything with binary (twofold) outcomes.

3 B is correct. The value of the cumulative distribution function lies between 0 
and 1 for any x: 0 ≤ F(x) ≤ 1.

4 C is correct. The binomial distribution is symmetric when the probability of 
success on a trial is 0.50, but it is asymmetric or skewed otherwise. Here, it is 
given that p = 0.50.

5 B is correct. The probability of any outcome is 0.05, P(1) = 1/20 = 0.05. The 
probability that X is greater than or equal to 3 but less than 6 is expressed as 
P(3 ≤ X < 6) = P(3) + P(4) + P(5) = 0.05 + 0.05 + 0.05 = 0.15.

6 A The probability of an earnings increase (success) in a year is estimated as 
7/10 = 0.70, or 70%, based on the record of the past 10 years.

B The probability that earnings will increase in 5 of the next 10 years is about 
10.3%. Define a binomial random variable X, counting the number of earn-
ings increases over the next 10 years. From Part A, the probability of an 
earnings increase in a given year is p = 0.70 and the number of trials (years) 
is n = 10. Equation 2 gives the probability that a binomial random variable 
has x successes in n trials, with the probability of success on a trial equal to 
p:

P X x x
n p p n

n x x
p px n x x n x�� � � � � �� � �

�� �
�� �� �1 1!

! !
.

 For this example,

5
10 0 7 0 3 10

10 5 5
0 7 0 3

252 0 16807 0 002

5 10 5 5 10 5� � �
�� �

� � �

� �. . !
! !

. .

. . 443 0 102919� . .

 We conclude that the probability that earnings will increase in exactly 5 of 
the next 10 years is 0.1029, or approximately 10.3%.

C The expected number of yearly increases is E(X) = np = 10 × 0.70 = 7.
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D The variance of the number of yearly increases over the next 10 years is σ2 
= np(1 – p) = 10 × 0.70 × 0.30 = 2.1. The standard deviation is 1.449 (the 
positive square root of 2.1).

E You must assume that (1) the probability of an earnings increase (success) is 
constant from year to year and (2) earnings increases are independent trials. 
If current and past earnings help forecast next year’s earnings, Assumption 
2 is violated. If the company’s business is subject to economic or industry 
cycles, neither assumption is likely to hold.

7 B is correct. To calculate the probability of four years of outperformance, use 
the formula

p x P X x
n
x

p p n
n x x

p px n x x n x� � � �� � � �
�
�
�

�
� �� � �

�� �
�� �� �1 1!

! !
.

 Using this formula to calculate the probability in four of five years, n = 5, x = 4, 
and p = 0.60.

 Therefore,

p 4 5
5 4 4

0 6 1 0 6 120 24 0 1296 0 40 0 25924 5 4� � �
�� �

�� � � � �� �� � ��!
! !

. . . . . ..

p 5 5
5 5 5

0 6 1 0 6 120 120 0 0778 1 0 07785 5 5� � �
�� �

�� � � � �� �� � ��!
! !

. . . . .

 The probability of outperforming four or more times is p(4) + p(5) = 0.2592 + 
0.0778 = 0.3370.

8 The observed success rate is 4/7 = 0.571, or 57.1%. The probability of four or 
fewer successes is F(4) = p(4) + p(3) + p(2) + p(1) + p(0), where p(4), p(3), p(2), 
p(1), and p(0) are, respectively, the probabilities of 4, 3, 2, 1, and 0 successes, 
according to the binomial distribution with n = 7 and p = 0.70. We have the 
following probabilities:

p(4) = (7!/4!3!)(0.704)(0.303) = 35(0.006483) = 0.226895.

p(3) = (7!/3!4!)(0.703)(0.304) = 35(0.002778) = 0.097241.

p(2) = (7!/2!5!)(0.702)(0.305) = 21(0.001191) = 0.025005.

p(1) = (7!/1!6!)(0.701)(0.306) = 7(0.000510) = 0.003572.

p(0) = (7!/0!7!)(0.700)(0.307) = 1(0.000219) = 0.000219.

 Summing all these probabilities, you conclude that F(4) = 0.226895 + 
0.097241 + 0.025005 + 0.003572 + 0.000219 = 0.352931, or 35.3%.

9 A The expected value of fourth- quarter sales is €14,500,000, calculated as 
(€14,000,000 + €15,000,000)/2. With a continuous uniform random variable, 
the mean or expected value is the midpoint between the smallest and largest 
values.

B The probability that fourth- quarter sales will be less than or equal to 
€14,125,000 is 0.125, or 12.5%, calculated as (€14,125,000 – €14,000,000)/
(€15,000,000 – €14,000,000).

10 A Approximately 68% of all outcomes of a normal random variable fall within 
plus or minus one standard deviation of the mean.

B Approximately 95% of all outcomes of a normal random variable fall within 
plus or minus two standard deviations of the mean.
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C Approximately 99% of all outcomes of a normal random variable fall within 
plus or minus three standard deviations of the mean.

11 C is correct. The probability that the performance is at or below the expectation 
is calculated by finding F(3) = p(3) + p(2) + p(1) + p(0) using the formula:

p x P X x
n
x

p p n
n x x

p px n x x n x� � � �� � � �
�
�
�

�
� �� � �

�� �
�� �� �1 1!

! !
.

 Using this formula,

p 3 4
4 3 3

0 75 1 0 75 24 6 0 42 0 25 0 423 4 3� � �
�� �

�� � � � �� �� � ��!
! !

. . . . . .

p 2 4
4 2 2

0 75 1 0 75 24 4 0 56 0 06 0 202 4 2� � �
�� �

�� � � � �� �� � ��!
! !

. . . . . .

p 1 4
4 1 1

0 75 1 0 75 24 6 0 75 0 02 0 061 4 1� � �
�� �

�� � � � �� �� � ��!
! !

. . . . . .

p 0 4
4 0 0

0 75 1 0 75 24 24 1 0 004 0 0040 4 0� � �
�� �

�� � � � �� �� � ��!
! !

. . . . .

 Therefore,

F(3) = p(3) + p(2) + p(1) + p(0) = 0.42 + 0.20 + 0.06 + 0.004 = 0.684, or 
approximately 68%.

12 A The probability of exhausting the liquidity pool is 4.7%. First, calcu-
late x T� � � � � �� � $ , $2 000 450 5  = 1.987616. By using Excel’s 

NORM.S.DIST() function, we get NORM.S.DIST(1.987616) = 0.9766. Thus, 
the probability of exhausting the liquidity pool is 2[1 – N(1.99)] = 2(1 
– 0.9766) = 0.0469, or about 4.7%.

B The probability of exhausting the liquidity pool is now 32.2%. The calcula-
tion follows the same steps as those in Part A. We calcu-
late x T� � � � � �� � $ , $2 000 450 20  = 0.993808. By using Excel’s 

NORM.S.DIST() function, we get NORM.S.DIST(0.993808)= 0.8398. Thus, 
the probability of exhausting the liquidity pool is 2[1 – N(0.99)] = 2(1 
– 0.8398) = 0.3203, or about 32.0%. This is a substantial probability that you 
will run out of funds to meet marking to market.

 In their paper, Kolb et al. called the probability of exhausting the liquidity 
pool the probability of ruin, a traditional name for this type of calculation.

13 B is correct. The normal distribution has a skewness of 0, a kurtosis of 3, and a 
mean, median, and mode that are all equal.

14 B is correct. Multivariate distributions specify the probabilities for a group of 
related random variables. A portfolio of technology stocks represents a group 
of related assets. Accordingly, statistical interrelationships must be considered, 
resulting in the need to use a multivariate normal distribution.

15 C is correct. A bivariate normal distribution (two stocks) will have two means, 
two variances, and one correlation. A multivariate normal distribution for the 
returns on n stocks will have n means, n variances, and n(n – 1)/2 distinct 
correlations.

16 A Because £50,000/£1,350,000 is 3.7%, for any return less than 3.7% the client 
will need to invade principal if she takes out £50,000. So RL = 3.7%.
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B To decide which of the allocations is safety- first optimal, select the alterna-
tive with the highest ratio [E(RP) − RL]/σP:

Allocation A: 0.5125 = (16 – 3.7)/24.

Allocation B: 0.488235 = (12 – 3.7)/17.

Allocation C: 0.525 = (10 – 3.7)/12.

Allocation D: 0.481818 = (9 – 3.7)/11.

 Allocation C, with the largest ratio (0.525), is the best alternative according 
to the safety- first criterion.

C To answer this question, note that P(RC < 3.7) = N(0.037 – 0.10)/0.12) 
= N(−0.525). By using Excel’s NORM.S.DIST() function, we get 
NORM.S.DIST((0.037 – 0.10)/0.12) = 29.98%, or about 30%. The safety- first 
optimal portfolio has a roughly 30% chance of not meeting a 3.7% return 
threshold.

17 A is correct. P(8% ≤ Portfolio return ≤ 11%) = N(Z corresponding to 11%) – N(Z 
corresponding to 8%). For the first term, NORM.S.DIST((11% – 8%)/14%) = 
58.48%. To get the second term immediately, note that 8% is the mean, and for 
the normal distribution, 50% of the probability lies on either side of the mean. 
Therefore, N(Z corresponding to 8%) must equal 50%. So, P(8% ≤ Portfolio 
return ≤ 11%) = 0.5848 – 0.50 = 0.0848, or approximately 8.5%.

18 B is correct. By using Excel’s NORM.S.DIST() function, we get 
NORM.S.DIST((4% – 7%)/13%) = 40.87%. The probability that the portfolio will 
underperform the target is about 41%.

19 A Monte Carlo simulation involves the use of computer software to repre-
sent the operation of a complex financial system. A characteristic feature 
of Monte Carlo simulation is the generation of a large number of random 
samples from a specified probability distribution (or distributions) to 
represent the role of risk in the system. Monte Carlo simulation is widely 
used to estimate risk and return in investment applications. In this setting, 
we simulate the portfolio’s profit and loss performance for a specified time 
horizon. Repeated trials within the simulation produce a simulated fre-
quency distribution of portfolio returns from which performance and risk 
measures are derived. Another important use of Monte Carlo simulation in 
investments is as a tool for valuing complex securities for which no analytic 
pricing formula is available. It is also an important modeling resource for 
securities with complex embedded options.

B Strengths: Monte Carlo simulation can be used to price complex securities 
for which no analytic expression is available, particularly European- style 
options.

 Weaknesses: Monte Carlo simulation provides only statistical estimates, not 
exact results. Analytic methods, when available, provide more insight into 
cause- and- effect relationships than does Monte Carlo simulation.

20 C is correct. The rate of return is a random variable because the future out-
comes are uncertain, and it is continuous because it can take on an unlimited 
number of outcomes.

21 B is correct. The function g(x) satisfies the conditions of a probability function. 
All of the values of g(x) are between 0 and 1, and the values of g(x) all sum to 1.

22 A is correct. The probability that X will take on a value of 4 or less is F(4) = 
P(X ≤ 4) = p(1) + p(2) + p(3) + p(4) = 0.60. The probability that X will take 
on a value of 3 or less is F(3) = P(X ≤ 3) = p(1) + p(2) + p(3) = 0.50. So, the 
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probability that X will take on a value of 4 is F(4) – F(3) = p(4) = 0.10. The 
probability of X = 2 can be found using the same logic: F(2) – F(1) = p(2) = 0.25 
– 0.15 = 0.10. The probability of X taking on a value of 2 or 4 is p(2) + p(4) = 
0.10 + 0.10 = 0.20.

23 A is correct. A trial, such as a coin flip, will produce one of two outcomes. Such 
a trial is a Bernoulli trial.

24 A is correct. The continuously compounded return of an asset over a period 
is equal to the natural log of the asset’s price change during the period. In this 
case,

ln(120/112) = 6.90%.

25 C is correct. The probability of an up move (p) can be found by solving the 
equation (p)uS + (1 – p)dS = (p)105 + (1 – p)97 = 102. Solving for p gives 8p = 
5, so p = 0.625.

26 A is correct. Only the top node value of $219.9488 exceeds $200.

$190.0000

$199.5000

$209.4750

$219.9488

$180.5000

$189.5250

$171.4750

$199.0013

$180.0488

$162.9013

27 A is correct. The probability of generating a random number equal to any fixed 
point under a continuous uniform distribution is zero.

28 C is correct. A characteristic feature of Monte Carlo simulation is the genera-
tion of a large number of random samples from a specified probability distri-
bution or distributions to represent the role of risk in the system. Therefore, it 
is very useful for investigating the sensitivity of a model to changes in assump-
tions—for example, on distributions of key variables.

29 C is correct. Monte Carlo simulation is a complement to analytical methods. 
Monte Carlo simulation provides statistical estimates and not exact results. 
Analytical methods, when available, provide more insight into cause- and- effect 
relationships.

30 B is correct. A normal distribution has a skewness of zero (it is symmetrical 
around the mean). A non- zero skewness implies asymmetry in a distribution.

31 A is correct. The chance of a negative return falls in the area to the left of 0% 
under a standard normal curve. By standardizing the returns and standard devi-
ations of the two assets, the likelihood of either asset experiencing a negative 
return may be determined: Z-score (standardized value) = (X – μ)/σ.

Z-score for a bond return of 0% = (0 – 2)/5 = –0.40.

Z-score for a stock return of 0% = (0 – 10)/15 = –0.67.

 For bonds, a 0% return falls 0.40 standard deviations below the mean return 
of 2%. In contrast, for stocks, a 0% return falls 0.67 standard deviations below 
the mean return of 10%. A standard deviation of 0.40 is less than a standard 
deviation of 0.67. Negative returns thus occupy more of the left tail of the bond 
distribution than the stock distribution. Thus, bonds are more likely than stocks 
to experience a negative return.
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32 B is correct. Allocation B has the highest safety- first ratio. The threshold return 
level, RL, for the portfolio is £90,000/£2,000,000 = 4.5%;, thus, any return less 
than RL = 4.5% will invade the portfolio principal. To compute the allocation 
that is safety- first optimal, select the alternative with the highest ratio:

E R RP L

P

�� ��� ��
�

.

Allocation A �
�

�
6 5 4 5

8 35
0 240. .

.
. .

Allocation B �
�

�
7 5 4 5

10 21
0 294. .

.
. .

Allocation C �
�

�
8 5 4 5

14 34
0 279. .

.
. .

33 B is correct. By definition, lognormal random variables cannot have negative 
values.

34 C is correct. A lognormal distributed variable has a lower bound of zero. 
The lognormal distribution is also right skewed, which is a useful property in 
describing asset prices.

35 A is correct. The continuously compounded return from t = 0 to t = 1 is r0,1 = 
ln(S1/S0) = ln(186.75/208.25) = –0.10897 = –10.90%.

36 A is correct, since it is false. Student’s t-distribution has longer (fatter) tails than 
the normal distribution and, therefore, it may provide a more reliable, more 
conservative downside risk estimate.

37 C is correct, since it is false. Both chi- square and F-distributions are bounded 
from below by zero, so the domains of their pdfs are restricted to positive 
numbers.
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Mastery The candidate should be able to:

a. compare and contrast probability samples with non- probability 
samples and discuss applications of each to an investment 
problem;

b. explain sampling error;

c. compare and contrast simple random, stratified random, cluster, 
convenience, and judgmental sampling;

d. explain the central limit theorem and its importance;

e. calculate and interpret the standard error of the sample mean;

f. identify and describe desirable properties of an estimator;

g. contrast a point estimate and a confidence interval estimate of a 
population parameter;

h. calculate and interpret a confidence interval for a population 
mean, given a normal distribution with 1) a known population 
variance, 2) an unknown population variance, or 3) an unknown 
population variance and a large sample size;

i. describe the use of resampling (bootstrap, jackknife) to estimate 
the sampling distribution of a statistic.

j. describe the issues regarding selection of the appropriate sample 
size, data snooping bias, sample selection bias, survivorship bias, 
look- ahead bias, and time- period bias.
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INTRODUCTION

Each day, we observe the high, low, and close of stock market indexes from around 
the world. Indexes such as the S&P 500 Index and the Nikkei 225 Stock Average 
are samples of stocks. Although the S&P 500 and the Nikkei do not represent the 
populations of US or Japanese stocks, we view them as valid indicators of the whole 
population’s behavior. As analysts, we are accustomed to using this sample information 
to assess how various markets from around the world are performing. Any statistics 
that we compute with sample information, however, are only estimates of the under-
lying population parameters. A sample, then, is a subset of the population—a subset 
studied to infer conclusions about the population itself.

We introduce and discuss sampling—the process of obtaining a sample. In 
investments, we continually make use of the mean as a measure of central tendency 
of random variables, such as return and earnings per share. Even when the probability 
distribution of the random variable is unknown, we can make probability statements 
about the population mean using the central limit theorem. We discuss and illustrate 
this key result. Following that discussion, we turn to statistical estimation. Estimation 
seeks precise answers to the question “What is this parameter’s value?”

The central limit theorem and estimation, the core of the body of methods pre-
sented in the sections that follow, may be applied in investment applications. We often 
interpret the results for the purpose of deciding what works and what does not work 
in investments. We will also discuss the interpretation of statistical results based on 
financial data and the possible pitfalls in this process.

SAMPLING METHODS

a compare and contrast probability samples with non- probability samples and 
discuss applications of each to an investment problem

b explain sampling error
c compare and contrast simple random, stratified random, cluster, convenience, 

and judgmental sampling

In this section, we present the various methods for obtaining information on a pop-
ulation (all members of a specified group) through samples (part of the population). 
The information on a population that we try to obtain usually concerns the value of a 
parameter, a quantity computed from or used to describe a population of data. When 
we use a sample to estimate a parameter, we make use of sample statistics (statistics, 
for short). A statistic is a quantity computed from or used to describe a sample of data.

We take samples for one of two reasons. In some cases, we cannot possibly exam-
ine every member of the population. In other cases, examining every member of the 
population would not be economically efficient. Thus, savings of time and money 
are two primary factors that cause an analyst to use sampling to answer a question 
about a population.

There are two types of sampling methods: probability sampling and non- 
probability sampling Probability sampling gives every member of the population 
an equal chance of being selected. Hence it can create a sample that is representative 
of the population. In contrast, non- probability sampling depends on factors other than 
probability considerations, such as a sampler’s judgment or the convenience to access 

1

2
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data. Consequently, there is a significant risk that non- probability sampling might 
generate a non- representative sample. In general, all else being equal, probability sam-
pling can yield more accuracy and reliability compared with non- probability sampling.

We first focus on probability sampling, particularly the widely used simple ran-
dom sampling and stratified random sampling. We then turn our attention to 
non- probability sampling.

2.1 Simple Random Sampling
Suppose a telecommunications equipment analyst wants to know how much major 
customers will spend on average for equipment during the coming year. One strat-
egy is to survey the population of telecom equipment customers and inquire what 
their purchasing plans are. In statistical terms, the characteristics of the population 
of customers’ planned expenditures would then usually be expressed by descriptive 
measures such as the mean and variance. Surveying all companies, however, would 
be very costly in terms of time and money.

Alternatively, the analyst can collect a representative sample of companies and 
survey them about upcoming telecom equipment expenditures. In this case, the analyst 
will compute the sample mean expenditure, X , a statistic. This strategy has a sub-
stantial advantage over polling the whole population because it can be accomplished 
more quickly and at lower cost.

Sampling, however, introduces error. The error arises because not all the companies 
in the population are surveyed. The analyst who decides to sample is trading time and 
money for sampling error.

When an analyst chooses to sample, he must formulate a sampling plan. A sam-
pling plan is the set of rules used to select a sample. The basic type of sample from 
which we can draw statistically sound conclusions about a population is the simple 
random sample (random sample, for short).

■■ Definition of Simple Random Sample. A simple random sample is a subset of 
a larger population created in such a way that each element of the population 
has an equal probability of being selected to the subset.

The procedure of drawing a sample to satisfy the definition of a simple random sample 
is called simple random sampling. How is simple random sampling carried out? We 
need a method that ensures randomness—the lack of any pattern—in the selection of 
the sample. For a finite (limited) population, the most common method for obtaining 
a random sample involves the use of random numbers (numbers with assured prop-
erties of randomness). First, we number the members of the population in sequence. 
For example, if the population contains 500 members, we number them in sequence 
with three digits, starting with 001 and ending with 500. Suppose we want a simple 
random sample of size 50. In that case, using a computer random- number generator or 
a table of random numbers, we generate a series of three- digit random numbers. We 
then match these random numbers with the number codes of the population members 
until we have selected a sample of size 50. Simple random sampling is particularly 
useful when data in the population is homogeneous—that is, the characteristics of the 
data or observations (e.g., size or region) are broadly similar. We will see that if this 
condition is not satisfied other types of sampling may be more appropriate.

Sometimes we cannot code (or even identify) all the members of a population. We 
often use systematic sampling in such cases. With systematic sampling, we select 
every kth member until we have a sample of the desired size. The sample that results 
from this procedure should be approximately random. Real sampling situations may 
require that we take an approximately random sample.
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Suppose the telecommunications equipment analyst polls a random sample of 
telecom equipment customers to determine the average equipment expenditure. The 
sample mean will provide the analyst with an estimate of the population mean expen-
diture. The mean obtained from the sample this way will differ from the population 
mean that we are trying to estimate. It is subject to error. An important part of this 
error is known as sampling error, which comes from sampling variation and occurs 
because we have data on only a subset of the population.

■■ Definition of Sampling Error. Sampling error is the difference between the 
observed value of a statistic and the quantity it is intended to estimate as a 
result of using subsets of the population.

A random sample reflects the properties of the population in an unbiased way, 
and sample statistics, such as the sample mean, computed on the basis of a random 
sample are valid estimates of the underlying population parameters.

A sample statistic is a random variable. In other words, not only do the original 
data from the population have a distribution but so does the sample statistic.

This distribution is the statistic’s sampling distribution.

■■ Definition of Sampling Distribution of a Statistic. The sampling distribution 
of a statistic is the distribution of all the distinct possible values that the statistic 
can assume when computed from samples of the same size randomly drawn 
from the same population.

In the case of the sample mean, for example, we refer to the “sampling distribution 
of the sample mean” or the distribution of the sample mean. We will have more to say 
about sampling distributions later in this reading. Next, however, we look at another 
sampling method that is useful in investment analysis.

2.2 Stratified Random Sampling
The simple random sampling method just discussed may not be the best approach in 
all situations. One frequently used alternative is stratified random sampling.

■■ Definition of Stratified Random Sampling. In stratified random sampling, the 
population is divided into subpopulations (strata) based on one or more classi-
fication criteria. Simple random samples are then drawn from each stratum in 
sizes proportional to the relative size of each stratum in the population. These 
samples are then pooled to form a stratified random sample.

In contrast to simple random sampling, stratified random sampling guarantees 
that population subdivisions of interest are represented in the sample. Another 
advantage is that estimates of parameters produced from stratified sampling have 
greater precision—that is, smaller variance or dispersion—than estimates obtained 
from simple random sampling.

Bond indexing is one area in which stratified sampling is frequently applied. 
Indexing is an investment strategy in which an investor constructs a portfolio to 
mirror the performance of a specified index. In pure bond indexing, also called the 
full- replication approach, the investor attempts to fully replicate an index by owning 
all the bonds in the index in proportion to their market value weights. Many bond 
indexes consist of thousands of issues, however, so pure bond indexing is difficult to 
implement. In addition, transaction costs would be high because many bonds do not 
have liquid markets. Although a simple random sample could be a solution to the 
cost problem, the sample would probably not match the index’s major risk factors—
interest rate sensitivity, for example. Because the major risk factors of fixed- income 
portfolios are well known and quantifiable, stratified sampling offers a more effective 
approach. In this approach, we divide the population of index bonds into groups of 
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similar duration (interest rate sensitivity), cash flow distribution, sector, credit quality, 
and call exposure. We refer to each group as a stratum or cell (a term frequently used 
in this context). Then, we choose a sample from each stratum proportional to the 
relative market weighting of the stratum in the index to be replicated.

EXAMPLE 1  

Bond Indexes and Stratified Sampling
Suppose you are the manager of a portfolio of bonds indexed to the Bloomberg 
Barclays US Government/Credit Index, meaning that the portfolio returns 
should be similar to those of the index. You are exploring several approaches to 
indexing, including a stratified sampling approach. You first distinguish among 
agency bonds, US Treasury bonds, and investment- grade corporate bonds. For 
each of these three groups, you define 10 maturity intervals—1 to 2 years, 2 
to 3 years, 3 to 4 years, 4 to 6 years, 6 to 8 years, 8 to 10 years, 10 to 12 years, 
12 to 15 years, 15 to 20 years, and 20 to 30 years—and also separate the bonds 
with coupons (annual interest rates) of 6% or less from the bonds with coupons 
of more than 6%.

1 How many cells or strata does this sampling plan entail?
2 If you use this sampling plan, what is the minimum number of issues the 

indexed portfolio can have?
3 Suppose that in selecting among the securities that qualify for selection 

within each cell, you apply a criterion concerning the liquidity of the secu-
rity’s market. Is the sample obtained random? Explain your answer.

Solution to 1:
We have 3 issuer classifications, 10 maturity classifications, and 2 coupon clas-
sifications. So, in total, this plan entails 3(10)(2) = 60 different strata or cells.

Solution to 2:
One cannot have less than 1 issue for each cell, so the portfolio must include 
at least 60 issues.

Solution to 3:
Applying any additional criteria to the selection of securities for the cells, not 
every security that might be included has an equal probability of being selected. 
As a result, the sampling is not random. In practice, indexing using stratified 
sampling usually does not strictly involve random sampling because the selec-
tion of bond issues within cells is subject to various additional criteria. Because 
the purpose of sampling in this application is not to make an inference about a 
population parameter but rather to index a portfolio, lack of randomness is not 
in itself a problem in this application of stratified sampling.

2.3 Cluster Sampling
Another sampling method, cluster sampling, also requires the division or classifica-
tion of the population into subpopulation groups, called clusters. In this method, the 
population is divided into clusters, each of which is essentially a mini- representation 
of the entire populations. Then certain clusters are chosen as a whole using simple 
random sampling. If all the members in each sampled cluster are sampled, this sample 
plan is referred to as one- stage cluster sampling. If a subsample is randomly selected 
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from each selected cluster, then the plan is referred as two- stage cluster sampling. 
Exhibit 1 (bottom right panel) shows how cluster sampling works and how it compares 
with the other probability sampling methods.

Exhibit 1   Probability Sampling

Simple random sample

Stratified sample Cluster sample

Subdivision
(strata)

Subdivision
(strata)

Systematic sample

Clusters

A major difference between cluster and stratified random samples is that in cluster 
sampling, a whole cluster is regarded as a sampling unit and only sampled clusters are 
included. In stratified random sampling, however, all the strata are included and only 
specific elements within each stratum are then selected as sampling units.

Cluster sampling is commonly used for market survey, and the most popular version 
identifies clusters based on geographic parameters. For example, a research institute 
is looking to survey if individual investors in the United States are bullish, bearish, 
or neutral on the stock market. It would be impossible to carry out the research by 
surveying all the individual investors in the country. The two- stage cluster sampling is 
a good solution in this case. At the first stage, a researcher can group the population 
by states and all the individual investors of each state represent a cluster. A handful of 
the clusters are then randomly selected. At the second stage, a simple random sample 
of individual investors is selected from each sampled cluster to conduct the survey.

Compared with other probability sampling methods, given equal sample size, clus-
ter sampling usually yields lower accuracy because a sample from a cluster might be 
less representative of the entire population. Its major advantage, however, is offering 
the most time- efficient and cost- efficient probability sampling plan for analyzing a 
vast population.

2.4 Non- Probability Sampling
Non- probability sampling methods rely not on a fixed selection process but instead 
on a researcher’s sample selection capabilities. We introduce two major types of non- 
probability sampling methods here.

■■ Convenience Sampling: In this method, an element is selected from the popu-
lation based on whether or not it is accessible to a researcher or on how easy it 
is for a researcher to access the element. Because the samples are selected con-
veniently, they are not necessarily representative of the entire population, and 
hence the level of the sampling accuracy could be limited. But the advantage 
of convenience sampling is that data can be collected quickly at a low cost. In 
situations such as the preliminary stage of research or in circumstances subject 
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to cost constraints, convenience sampling is often used as a time- efficient and 
cost- effective sampling plan for a small- scale pilot study before testing a large- 
scale and more representative sample.

■■ Judgmental Sampling: This sampling process involves selectively handpicking 
elements from the population based on a researcher’s knowledge and pro-
fessional judgment. Sample selection under judgmental sampling could be 
affected by the bias of the researcher and might lead to skewed results that do 
not represent the whole population. In circumstances where there is a time 
constraint, however, or when the specialty of researchers is critical to select a 
more representative sample than by using other probability or non- probability 
sampling methods, judgmental sampling allows researchers to go directly to 
the target population of interest. For example, when auditing financial state-
ments, seasoned auditors can apply their sound judgment to select accounts or 
transactions that can provide sufficient audit coverage. Example 2 illustrates an 
application of these sampling methods.

EXAMPLE 2  

Demonstrating the Power of Sampling
To demonstrate the power of sampling, we conduct two sampling experiments 
on a large dataset. The full dataset is the “population,” representing daily returns 
of the fictitious Euro- Asia- Africa (EAA) Equity Index. This dataset spans a five- 
year period and consists of 1,258 observations of daily returns with a minimum 
value of −4.1% and a maximum value of 5.0%.

First, we calculate the mean daily return of the EAA Equity Index (using 
the population).

By taking the average of all the data points, the mean of the entire daily 
return series is computed as 0.035%.

First Experiment: Random Sampling
The sample size m is set to 5, 10, 20, 50, 100, 200, 500, and 1,000. At each sample 
size, we run random sampling multiple times (N = 100) to collect 100 samples 
to compute mean absolute error. The aim is to compute and plot the mean error 
versus the sample size.

For a given sample size m, we use the following procedure to compute mean 
absolute error in order to measure sampling error:

1 Randomly draw m observations from the entire daily return series to form 
a sample.

2 Compute the mean of this sample.
3 Compute the absolute error, the difference between the sample’s mean 

and the population mean. Because we treat the whole five- year daily 
return series as a population, the population mean is 0.035% as we com-
puted in Solution 1.

4 We repeat the previous three steps a hundred times (N =100) to collect 
100 samples of the same size m and compute the absolute error of each 
sample.

5 Compute the mean of the 100 absolute errors as the mean absolute error 
for the sample size m.

By applying this procedure, we compute mean absolute errors for eight 
different sample sizes: m = 5, 10, 20, 50, 100, 200, 500, and 1000. Exhibit  2 
summarizes the results.
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Exhibit 2   Mean Absolute Error of Random Sampling

Sample 
size 5 10 20 50 100 200 500 1,000

Mean 
abso-
lute 
error

0.297% 0.218% 0.163% 0.091% 0.063% 0.039% 0.019% 0.009%

Mean absolute errors are plotted against sample size in Exhibit 3. The plot 
shows that the error quickly shrinks as the sample size increases. It also indi-
cates that a minimum sample size is needed to limit sample error and achieve 
a certain level of accuracy. After a certain size, however (e.g., 200 to 400 in this 
case), there is little incremental benefit from adding more observations.

Exhibit 3   Mean Absolute Error of Random Sampling vs. Sample Size

Mean Absolute Deviation
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Second Experiment: Stratified Random Sampling
We now conduct stratified random sampling by dividing daily returns into groups 
by year. The sample size m is again set to 5, 10, 20, 50, 100, 200, 500, and 1,000. 
At each sample size, run random sampling multiple times (N = 100) to collect 
100 samples to compute mean absolute error.

We follow the same steps as before, except for the first step. Rather than 
running a simple random sampling, we conduct stratified random sampling—that 
is, randomly selecting subsamples of equal number from daily return groups by 
year to generate a full sample. For example, for a sample of 50, 10 data points are 
randomly selected from daily returns of each year from 2014 to 2018, respectively. 
Exhibit 4 summarizes the results.
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Exhibit 4   Mean Absolute Error of Stratified Random Sampling

Sample 
size 5 10 20 50 100 200 500 1,000

Mean 
absolute 
error

0.294% 0.205% 0.152% 0.083% 0.071% 0.051% 0.025% 0.008%

Mean absolute errors are plotted against sample size in Exhibit 5. Similar 
to random sampling, the plot shows rapid shrinking of errors with increasing 
sample size, but this incremental benefit diminishes after a certain sample size 
is reached.

Exhibit 5   Mean Absolute Error of Stratified Random Sampling vs. 
Sample Size

Mean Absolute Deviation
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The sampling methods introduced here are summarized in the diagram in Exhibit 6.
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Exhibit 6   Summary of Sampling Methods

Sampling
Methods

Probability
Methods

Non-Probability
Methods

Simple Random
Sampling

Systematic
Sampling

Stratified Random
Sampling

Cluster
Sampling

Convenience
Sampling

Judgment
Sampling

EXAMPLE 3  

An analyst is studying research and development (R&D) spending by pharma-
ceutical companies around the world. She considers three sampling methods for 
understanding a company’s level of R&D. Method 1 is to simply use all the data 
available to her from an internal database that she and her colleagues built while 
researching several dozen representative stocks in the sector. Method 2 involves 
relying on a commercial database provided by a data vendor. She would select 
every fifth pharmaceutical company on the list to pull the data. Method 3 is to 
first divide pharmaceutical companies in the commercial database into three 
groups according to the region where a company is headquartered (e.g., Asia, 
Europe, or North America) and then randomly select a subsample of companies 
from each group, with the sample size proportional to the size of its associated 
group in order to form a complete sample.

1 Method 1 is an example of:
A simple random sampling.
B stratified random sampling.
C convenience sampling.

2 Method 2 is an example of:
A judgmental sampling.
B systematic sampling.
C cluster sampling.

3 Method 3 is an example of:
A simple random sampling.
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B stratified random sampling.
C cluster sampling.

Solution to 1:
C is correct. The analyst selects the data from the internal database because 
they are easy and convenient to access.

Solution to 2:
B is correct. The sample elements are selected with a fixed interval (k = 5) from 
the large population provided by data vendor.

Solution to 3:
B is correct. The population of pharmaceutical companies is divided into three 
strata by region to perform random sampling individually.

2.5 Sampling from Different Distributions
In practice, other than selecting appropriate sampling methods, we also need to be 
careful when sampling from a population that is not under one single distribution. 
Example 4 illustrates the problems that can arise when sampling from more than one 
distribution.

EXAMPLE 4  

Calculating Sharpe Ratios: One or Two Years of Quarterly 
Data
Analysts often use the Sharpe ratio to evaluate the performance of a managed 
portfolio. The Sharpe ratio is the average return in excess of the risk- free rate 
divided by the standard deviation of returns. This ratio measures the return of 
a fund or a security over and above the risk- free rate (the excess return) earned 
per unit of standard deviation of return.

To compute the Sharpe ratio, suppose that an analyst collects eight quarterly 
excess returns (i.e., total return in excess of the risk- free rate). During the first 
year, the investment manager of the portfolio followed a low- risk strategy, and 
during the second year, the manager followed a high- risk strategy. For each of 
these years, the analyst also tracks the quarterly excess returns of some bench-
mark against which the manager will be evaluated. For each of the two years, 
the Sharpe ratio for the benchmark is 0.21. Exhibit 7 gives the calculation of the 
Sharpe ratio of the portfolio.

Exhibit 7   Calculation of Sharpe Ratios: Low- Risk and High- Risk 
Strategies

Quarter/Measure
Year 1 

Excess Returns
Year 2 

Excess Returns

Quarter 1 −3% −12%
Quarter 2 5 20
Quarter 3 −3 −12
Quarter 4 5 20
Quarterly average 1% 4%

(continued)
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Quarter/Measure
Year 1 

Excess Returns
Year 2 

Excess Returns

Quarterly standard deviation 4.62% 18.48%
Sharpe ratio = 0.22 = 1/4.62 = 4/18.48

For the first year, during which the manager followed a low- risk strategy, the 
average quarterly return in excess of the risk- free rate was 1% with a standard 
deviation of 4.62%. The Sharpe ratio is thus 1/4.62 = 0.22. The second year’s 
results mirror the first year except for the higher average return and volatility. 
The Sharpe ratio for the second year is 4/18.48 = 0.22. The Sharpe ratio for the 
benchmark is 0.21 during the first and second years. Because larger Sharpe 
ratios are better than smaller ones (providing more return per unit of risk), the 
manager appears to have outperformed the benchmark.

Now, suppose the analyst believes a larger sample to be superior to a small 
one. She thus decides to pool the two years together and calculate a Sharpe ratio 
based on eight quarterly observations. The average quarterly excess return for 
the two years is the average of each year’s average excess return. For the two- year 
period, the average excess return is (1 + 4)/2 = 2.5% per quarter. The standard 
deviation for all eight quarters measured from the sample mean of 2.5% is 
12.57%. The portfolio’s Sharpe ratio for the two- year period is now 2.5/12.57 = 
0.199; the Sharpe ratio for the benchmark remains 0.21. Thus, when returns 
for the two- year period are pooled, the manager appears to have provided less 
return per unit of risk than the benchmark and less when compared with the 
separate yearly results.

The problem with using eight quarters of return data is that the analyst has 
violated the assumption that the sampled returns come from the same population. 
As a result of the change in the manager’s investment strategy, returns in Year 
2 followed a different distribution than returns in Year 1. Clearly, during Year 
1, returns were generated by an underlying population with lower mean and 
variance than the population of the second year. Combining the results for the 
first and second years yielded a sample that was representative of no population. 
Because the larger sample did not satisfy model assumptions, any conclusions the 
analyst reached based on the larger sample are incorrect. For this example, she 
was better off using a smaller sample than a larger sample because the smaller 
sample represented a more homogeneous distribution of returns.

DISTRIBUTION OF THE SAMPLE MEAN AND THE 
CENTRAL LIMIT THEOREM

d explain the central limit theorem and its importance
e calculate and interpret the standard error of the sample mean

Earlier we presented a telecommunications equipment analyst who decided to sample 
in order to estimate mean planned capital expenditures by the customers of telecom 
equipment vendors. Supposing that the sample is representative of the underlying 
population, how can the analyst assess the sampling error in estimating the population 

3

Exhibit 7   (Continued)
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mean? Viewed as a formula that takes a function of the random outcomes of a random 
variable, the sample mean is itself a random variable with a probability distribution. That 
probability distribution is called the statistic’s sampling distribution. To estimate how 
closely the sample mean can be expected to match the underlying population mean, 
the analyst needs to understand the sampling distribution of the mean. Fortunately, 
we have a result, the central limit theorem, that helps us understand the sampling 
distribution of the mean for many of the estimation problems we face.

3.1 The Central Limit Theorem
To explain the central limit theorem, we will revisit the daily returns of the fictitious 
Euro- Asia- Africa Equity Index shown earlier. The dataset (the population) consists 
of daily returns of the index over a five- year period. The 1,258 return observations 
have a population mean of 0.035%.

We conduct four different sets of random sampling from the population. We first 
draw a random sample of 10 daily returns and obtain a sample mean. We repeat this 
exercise 99 more times, drawing a total of 100 samples of 10 daily returns. We plot 
the sample mean results in a histogram, as shown in the top left panel of Exhibit 8. 
We then repeat the process with a larger sample size of 50 daily returns. We draw 100 
samples of 50 daily returns and plot the results (the mean returns) in the histogram 
shown in the top right panel of Exhibit 8. We then repeat the process for sample sizes 
of 100 and 300 daily returns, respectively, again drawing 100 samples in each case. 
These results appear in the bottom left and bottom right panels of Exhibit 8. Looking 
at all four panels together, we observe that the larger the sample size, the more closely 
the histogram follows the shape of normal distribution.
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Exhibit 8   Sampling Distribution with Increasing Sample Size

A. Sample Size n = 10
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C. Sample Size n = 100
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B. Sample Size n = 50
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D. Sample Size n = 300
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The results of this exercise show that as we increase the size of a random sample, 
the distribution of the sample means tends towards a normal distribution. This is a 
significant outcome and brings us to the central limit theorem concept, one of the 
most practically useful theorems in probability theory. It has important implications 
for how we construct confidence intervals and test hypotheses. Formally, it is stated 
as follows:

■■ The Central Limit Theorem. Given a population described by any probability 
distribution having mean µ and finite variance σ2, the sampling distribution of 
the sample mean X  computed from random samples of size n from this 
population will be approximately normal with mean µ (the population mean) 
and variance σ2/n (the population variance divided by n) when the sample size 
n is large.

Consider what the expression σ2/n signifies. Variance (σ2) stays the same, but as 
n increases, the size of the fraction decreases. This dynamic suggests that it becomes 
progressively less common to obtain a sample mean that is far from the population 
mean with a larger sample size. For example, if we randomly pick returns of five stocks 
(trading on a market that features more than 1,000 stocks) on a particular day, their 
mean return is likely to be quite different from the market return. If we pick 100 stocks, 
the sample mean will be much closer to the market return. If we pick 1,000 stocks, 
the sample mean will likely be very close to the market return.
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The central limit theorem allows us to make quite precise probability statements 
about the population mean by using the sample mean, whatever the distribution of 
the population (so long as it has finite variance), because the sample mean follows 
an approximate normal distribution for large- size samples. The obvious question is, 
“When is a sample’s size large enough that we can assume the sample mean is nor-
mally distributed?” In general, when sample size n is greater than or equal to 30, we 
can assume that the sample mean is approximately normally distributed. When the 
underlying population is very non- normal, a sample size well in excess of 30 may be 
required for the normal distribution to be a good description of the sampling distri-
bution of the mean.

EXAMPLE 5  

A research analyst makes two statements about repeated random sampling:

1 When repeatedly drawing large samples from datasets, the sample means 
are approximately normally distributed.

2 The underlying population from which samples are drawn must be nor-
mally distributed in order for the sample mean to be normally distributed.

 Which of the following best describes the analyst’s statements?
A Statement 1 is false; Statement 2 is true.
B Both statements are true.
C Statement 1 is true; Statement 2 is false.

Solution:
C is correct. According to the central limit theorem, Statement 1 is true. Statement 
2 is false because the underlying population does not need to be normally dis-
tributed in order for the sample mean to be normally distributed.

3.2 Standard Error of the Sample Mean
The central limit theorem states that the variance of the distribution of the sample 
mean is σ2/n. The positive square root of variance is standard deviation. The standard 
deviation of a sample statistic is known as the standard error of the statistic. The 
standard error of the sample mean is an important quantity in applying the central 
limit theorem in practice.

■■ Definition of the Standard Error of the Sample Mean. For sample mean X  
calculated from a sample generated by a population with standard deviation σ, 
the standard error of the sample mean is given by one of two expressions:

�
�

X n
�

when we know σ, the population standard deviation, or by

s s
nX =

when we do not know the population standard deviation and need to use the 
sample standard deviation, s, to estimate it.

(1)

(2)
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In practice, we almost always need to use Equation 2. The estimate of s is given 
by the square root of the sample variance, s2, calculated as follows:

s
X X

n

i
i

n

2

2

1
1

�

�� �
�

�
�

It is worth noting that although the standard error is the standard deviation of the 
sampling distribution of the parameter, “standard deviation” in general and “standard 
error” are two distinct concepts, and the terms are not interchangeable. Simply put, 
standard deviation measures the dispersion of the data from the mean, whereas stan-
dard error measures how much inaccuracy of a population parameter estimate comes 
from sampling. The contrast between standard deviation and standard error reflects 
the distinction between data description and inference. If we want to draw conclusions 
about how spread out the data are, standard deviation is the term to quote. If we want 
to find out how precise the estimate of a population parameter from sampled data is 
relative to its true value, standard error is the metric to use.

We will soon see how we can use the sample mean and its standard error to make 
probability statements about the population mean by using the technique of confidence 
intervals. First, however, we provide an illustration of the central limit theorem’s force.

EXAMPLE 6   

The Central Limit Theorem
It is remarkable that the sample mean for large sample sizes will be distributed 
normally regardless of the distribution of the underlying population. To illustrate 
the central limit theorem in action, we specify in this example a distinctly non- 
normal distribution and use it to generate a large number of random samples 
of size 100. We then calculate the sample mean for each sample and observe 
the frequency distribution of the calculated sample means. Does that sampling 
distribution look like a normal distribution?

We return to the telecommunications analyst studying the capital expenditure 
plans of telecom businesses. Suppose that capital expenditures for communi-
cations equipment form a continuous uniform random variable with a lower 
bound equal to $0 and an upper bound equal to $100—for short, call this a 
uniform (0, 100) random variable. The probability function of this continuous 
uniform random variable has a rather simple shape that is anything but normal. 
It is a horizontal line with a vertical intercept equal to 1/100. Unlike a normal 
random variable, for which outcomes close to the mean are most likely, all pos-
sible outcomes are equally likely for a uniform random variable.

To illustrate the power of the central limit theorem, we conduct a Monte 
Carlo simulation to study the capital expenditure plans of telecom businesses. 
In this simulation, we collect 200 random samples of the capital expenditures 
of 100 companies (200 random draws, each consisting of the capital expenditures 
of 100 companies with n = 100). In each simulation trial, 100 values for capital 
expenditure are generated from the uniform (0, 100) distribution. For each 
random sample, we then compute the sample mean. We conduct 200 simulation 
trials in total. Because we have specified the continuous random distribution 
generating the samples, we know that the population mean capital expenditure 
is equal to ($0 + $100 million)/2 = $50 million (i.e., µ = (a + b)/2) ; the population 
variance of capital expenditures is equal to (100 − 0)2/12 = 833.33 (i.e., σ2 = (b 
− a)2/12); thus, the standard deviation is $28.87 million and the standard error 
is 28 87 100.  = 2.887 under the central limit theorem.

(3)
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The results of this Monte Carlo experiment are tabulated in Exhibit 9 in the 
form of a frequency distribution. This distribution is the estimated sampling 
distribution of the sample mean.

Exhibit 9   Frequency Distribution: 200 Random 
Samples of a Uniform (0,100) Random 
Variable

Range of Sample Means 
($ million)

Absolute Frequency

42 5 44. � �X 1

44 45 5� �X .  6

45 5 47. � �X  22

47 48 5� �X .  39

48 5 50. � �X  41

50 51 5� �X .  39

51 5 53. � �X  23

53 54 5� �X .  12

54 5 56. � �X  12

56 57 5� �X .  5

Note: X  is the mean capital expenditure for each sample.

The frequency distribution can be described as bell- shaped and centered 
close to the population mean of 50. The most frequent, or modal, range, with 
41 observations, is 48.5 to 50. The overall average of the sample means is $49.92, 
with a standard error equal to $2.80. The calculated standard error is close to 
the value of 2.887 given by the central limit theorem. The discrepancy between 
calculated and expected values of the mean and standard deviation under the 
central limit theorem is a result of random chance (sampling error).

In summary, although the distribution of the underlying population is very 
non- normal, the simulation has shown that a normal distribution well describes 
the estimated sampling distribution of the sample mean, with mean and standard 
error consistent with the values predicted by the central limit theorem.

To summarize, according to the central limit theorem, when we sample from any 
distribution, the distribution of the sample mean will have the following properties 
as long as our sample size is large:

■■ The distribution of the sample mean X  will be approximately normal.
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■■ The mean of the distribution of X  will be equal to the mean of the population 
from which the samples are drawn.

■■ The variance of the distribution of X  will be equal to the variance of the 
population divided by the sample size.

We next discuss the concepts and tools related to estimating the population 
parameters, with a special focus on the population mean. We focus on the population 
mean because analysts are more likely to meet interval estimates for the population 
mean than any other type of interval estimate.

POINT ESTIMATES OF THE POPULATION MEAN

f identify and describe desirable properties of an estimator

Statistical inference traditionally consists of two branches, hypothesis testing and 
estimation. Hypothesis testing addresses the question “Is the value of this parameter 
(say, a population mean) equal to some specific value (0, for example)?” In this process, 
we have a hypothesis concerning the value of a parameter, and we seek to determine 
whether the evidence from a sample supports or does not support that hypothesis. 
The topic of hypothesis testing will be discussed later.

The second branch of statistical inference, and what we focus on now, is estimation. 
Estimation seeks an answer to the question “What is this parameter’s (for example, 
the population mean’s) value?” In estimating, unlike in hypothesis testing, we do not 
start with a hypothesis about a parameter’s value and seek to test it. Rather, we try 
to make the best use of the information in a sample to form one of several types of 
estimates of the parameter’s value. With estimation, we are interested in arriving 
at a rule for best calculating a single number to estimate the unknown population 
parameter (a point estimate). In addition to calculating a point estimate, we may also 
be interested in calculating a range of values that brackets the unknown population 
parameter with some specified level of probability (a confidence interval). We first 
discuss point estimates of parameters and then turn our attention to the formulation 
of confidence intervals for the population mean.

4.1 Point Estimators
An important concept introduced here is that sample statistics viewed as formulas 
involving random outcomes are random variables. The formulas that we use to 
compute the sample mean and all the other sample statistics are examples of esti-
mation formulas or estimators. The particular value that we calculate from sample 
observations using an estimator is called an estimate. An estimator has a sampling 
distribution; an estimate is a fixed number pertaining to a given sample and thus has 
no sampling distribution. To take the example of the mean, the calculated value of the 
sample mean in a given sample, used as an estimate of the population mean, is called 
a point estimate of the population mean. As we have seen earlier, the formula for 
the sample mean can and will yield different results in repeated samples as different 
samples are drawn from the population.

4
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In many applications, we have a choice among a number of possible estimators 
for estimating a given parameter. How do we make our choice? We often select esti-
mators because they have one or more desirable statistical properties. Following is 
a brief description of three desirable properties of estimators: unbiasedness (lack of 
bias), efficiency, and consistency.

■■ Unbiasedness. An unbiased estimator is one whose expected value (the mean 
of its sampling distribution) equals the parameter it is intended to estimate.

For example, as shown in Exhibit 10 of the sampling distribution of the sample 
mean, the expected value of the sample mean, X , equals μ, the population mean, so 
we say that the sample mean is an unbiased estimator (of the population mean). The 
sample variance, s2, calculated using a divisor of n − 1 (Equation 3), is an unbiased 
estimator of the population variance, σ2. If we were to calculate the sample variance 
using a divisor of n, the estimator would be biased: Its expected value would be smaller 
than the population variance. We would say that sample variance calculated with a 
divisor of n is a biased estimator of the population variance.

Exhibit 10   Unbiasedness of an Estimator

X = μX = μ––

Whenever one unbiased estimator of a parameter can be found, we can usually find 
a large number of other unbiased estimators. How do we choose among alternative 
unbiased estimators? The criterion of efficiency provides a way to select from among 
unbiased estimators of a parameter.

■■ Efficiency. An unbiased estimator is efficient if no other unbiased estimator of 
the same parameter has a sampling distribution with smaller variance.

To explain the definition, in repeated samples we expect the estimates from an 
efficient estimator to be more tightly grouped around the mean than estimates from 
other unbiased estimators. For example, Exhibit 11 shows the sampling distributions 
of two different estimators of the population mean. Both estimators A and B are 
unbiased because their expected values are equal to the population mean (
X XA B� � �), but estimator A is more efficient because it shows smaller variance. 

Efficiency is an important property of an estimator. Sample mean X  is an efficient 
estimator of the population mean; sample variance s2 is an efficient estimator of σ2.
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Exhibit 11   Efficiency of an Estimator

––XA = XB = μXA = XB = μ––

A

B

Recall that a statistic’s sampling distribution is defined for a given sample size. 
Different sample sizes define different sampling distributions. For example, the vari-
ance of sampling distribution of the sample mean is smaller for larger sample sizes. 
Unbiasedness and efficiency are properties of an estimator’s sampling distribution 
that hold for any size sample. An unbiased estimator is unbiased equally in a sample 
of size 100 and in a sample of size 1,000. In some problems, however, we cannot find 
estimators that have such desirable properties as unbiasedness in small samples. In this 
case, statisticians may justify the choice of an estimator based on the properties of the 
estimator’s sampling distribution in extremely large samples, the estimator’s so- called 
asymptotic properties. Among such properties, the most important is consistency.

■■ Consistency. A consistent estimator is one for which the probability of esti-
mates close to the value of the population parameter increases as sample size 
increases.

Somewhat more technically, we can define a consistent estimator as an estimator 
whose sampling distribution becomes concentrated on the value of the parameter it 
is intended to estimate as the sample size approaches infinity. The sample mean, in 
addition to being an efficient estimator, is also a consistent estimator of the population 
mean: As sample size n goes to infinity, its standard error, σ n , goes to 0 and its 
sampling distribution becomes concentrated right over the value of population mean, 
µ. Exhibit 12 illustrates the consistency of the sample mean, in which the standard 
error of the estimator narrows as the sample size increases. To summarize, we can 
think of a consistent estimator as one that tends to produce more and more accurate 
estimates of the population parameter as we increase the sample’s size. If an estimator 
is consistent, we may attempt to increase the accuracy of estimates of a population 
parameter by calculating estimates using a larger sample. For an inconsistent estimator, 
however, increasing sample size does not help to increase the probability of accurate 
estimates.
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Exhibit 12   Consistency of an Estimator

––X = μX = μ

n = 1,000

n = 10

It is worth noting that in a Big Data world, consistency is much more crucial 
than efficiency, because the accuracy of a population parameter’s estimates can be 
increasingly improved with the availability of more sample data. In addition, given a 
big dataset, a biased but consistent estimator can offer considerably reduced error. For 
example, s 2/n is a biased estimator of variance. As n goes to infinity, the distinction 
between s 2/n and the unbiased estimator s2/(n − 1) diminish to zero.

EXAMPLE 7  

Exhibit 13 plots several sampling distributions of an estimator for the population 
mean, and the vertical dash line represents the true value of population mean. 

Which of the following statements best describes the estimator’s properties?

A The estimator is unbiased.
B The estimator is biased and inconsistent.
C The estimator is biased but consistent.
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Exhibit 13   Sampling Distributions of an Estimator

μμ

n = 1,000

n = 200

n = 50

Solution:
C is correct. The chart shows three sampling distributions of the estimator at 
different sample sizes (n = 50, 200, and 1,000). We can observe that the means of 
each sampling distribution—that is, the expected value of the estimator—devi-
ates from the population mean, so the estimator is biased. As the sample size 
increases, however, the mean of the sampling distribution draws closer to the 
population mean with smaller variance. So, it is a consistent estimator.

CONFIDENCE INTERVALS FOR THE POPULATION 
MEAN AND SELECTION OF SAMPLE SIZE

g contrast a point estimate and a confidence interval estimate of a population 
parameter

h calculate and interpret a confidence interval for a population mean, given a nor-
mal distribution with 1) a known population variance, 2) an unknown popula-
tion variance, or 3) an unknown population variance and a large sample size

When we need a single number as an estimate of a population parameter, we make 
use of a point estimate. However, because of sampling error, the point estimate is not 
likely to equal the population parameter in any given sample. Often, a more useful 
approach than finding a point estimate is to find a range of values that we expect to 
bracket the parameter with a specified level of probability—an interval estimate of 
the parameter. A confidence interval fulfills this role.

■■ Definition of Confidence Interval. A confidence interval is a range for which 
one can assert with a given probability 1 − α, called the degree of confidence, 
that it will contain the parameter it is intended to estimate. This interval is often 
referred to as the 100(1 − α)% confidence interval for the parameter.

The endpoints of a confidence interval are referred to as the lower and upper 
confidence limits. In this reading, we are concerned only with two- sided confidence 
intervals—confidence intervals for which we calculate both lower and upper limits.

5
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Confidence intervals are frequently given either a probabilistic interpretation or a 
practical interpretation. In the probabilistic interpretation, we interpret a 95% confi-
dence interval for the population mean as follows. In repeated sampling, 95% of such 
confidence intervals will, in the long run, include or bracket the population mean. 
For example, suppose we sample from the population 1,000 times, and based on each 
sample, we construct a 95% confidence interval using the calculated sample mean. 
Because of random chance, these confidence intervals will vary from each other, but we 
expect 95%, or 950, of these intervals to include the unknown value of the population 
mean. In practice, we generally do not carry out such repeated sampling. Therefore, 
in the practical interpretation, we assert that we are 95% confident that a single 95% 
confidence interval contains the population mean. We are justified in making this 
statement because we know that 95% of all possible confidence intervals constructed 
in the same manner will contain the population mean. The confidence intervals that 
we discuss in this reading have structures similar to the following basic structure:

■■ Construction of Confidence Intervals. A 100(1 − α)% confidence interval for a 
parameter has the following structure:

Point estimate ± Reliability factor × Standard error

where

 Point estimate = a point estimate of the parameter (a value of a 
sample statistic)

 Reliability factor = a number based on the assumed distribution of 
the point estimate and the degree of confidence (1 − α) 
for the confidence interval

 Standard error = the standard error of the sample statistic provid-
ing the point estimate

The quantity “Reliability factor × Standard error” is sometimes called the pre-
cision of the estimator; larger values of the product imply lower precision in 
estimating the population parameter.

The most basic confidence interval for the population mean arises when we are 
sampling from a normal distribution with known variance. The reliability factor in 
this case is based on the standard normal distribution, which has a mean of 0 and a 
variance of 1. A standard normal random variable is conventionally denoted by Z. 
The notation zα denotes the point of the standard normal distribution such that α 
of the probability remains in the right tail. For example, 0.05 or 5% of the possible 
values of a standard normal random variable are larger than z0.05 = 1.65. Similarly, 
0.025 or 2.5% of the possible values of a standard normal random variable are larger 
than z0.025 = 1.96.

Suppose we want to construct a 95% confidence interval for the population mean 
and, for this purpose, we have taken a sample of size 100 from a normally distributed 
population with known variance of σ2 = 400 (so, σ = 20). We calculate a sample mean 
of X  = 25. Our point estimate of the population mean is, therefore, 25. If we move 
1.96 standard deviations above the mean of a normal distribution, 0.025 or 2.5% of 
the probability remains in the right tail; by symmetry of the normal distribution, if 
we move 1.96 standard deviations below the mean, 0.025 or 2.5% of the probability 
remains in the left tail. In total, 0.05 or 5% of the probability is in the two tails and 
0.95 or 95% lies in between. So, z0.025 = 1.96 is the reliability factor for this 95% con-
fidence interval. Note the relationship 100(1 − α)% for the confidence interval and the 
zα/2 for the reliability factor. The standard error of the sample mean, given by Equation 1, 
is �X � 20 100 = 2. The confidence interval, therefore, has a lower limit of X X� 1 96. �  
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= 25 − 1.96(2) = 25 − 3.92  = 21.08. The upper limit of the confidence interval 
is X X� 1 96. �  = 25 + 1.96(2) = 25 + 3.92 = 28.92. The 95% confidence interval for the 
population mean spans 21.08 to 28.92.

■■ Confidence Intervals for the Population Mean (Normally Distributed 
Population with Known Variance). A 100(1 − α)% confidence interval for pop-
ulation mean µ when we are sampling from a normal distribution with known 
variance σ2 is given by

X z
n

� �
�

2

The reliability factors for the most frequently used confidence intervals are as follows.

■■ Reliability Factors for Confidence Intervals Based on the Standard Normal 
Distribution. We use the following reliability factors when we construct confi-
dence intervals based on the standard normal distribution:

■● 90% confidence intervals: Use z0.05 = 1.65
■● 95% confidence intervals: Use z0.025 = 1.96
■● 99% confidence intervals: Use z0.005 = 2.58

These reliability factors highlight an important fact about all confidence intervals. 
As we increase the degree of confidence, the confidence interval becomes wider and 
gives us less precise information about the quantity we want to estimate.

Exhibit 14 demonstrates how a confidence interval works. We again use the daily 
returns of the fictitious Euro- Asia- Africa Equity Index shown earlier. The dataset 
consists of 1,258 observations with a population mean of 0.035% and a population 
standard deviation of 0.834%. We conduct random sampling from the population 1,000 
times, drawing a sample of a hundred daily returns (n = 100) each time.

We construct a histogram of the sample means, shown in Exhibit 14. The shape 
appears to be that of a normal distribution, in line with the central limit theorem. 
We next pick one random sample to construct confidence intervals around its sample 
mean. The mean of the selected sample is computed to be 0.103% (as plotted with a 
solid line). Next we construct 99%, 95%, and 50% confidence intervals around that 
sample mean. We use Equation 4, to compute the upper and lower bounds of each 
pair of confidence intervals and plot these bounds in dashed lines.

The resulting chart shows that confidence intervals narrow with decreasing con-
fidence level, and vice versa. For example, the narrowest confidence interval in the 
chart corresponds to the lowest confidence level of 50%—that is, we are only 50% 
confident that the population mean falls within the 50% confidence interval around 
the sample mean. Importantly, as shown by Equation 4, given a fixed confidence level, 
the confidence interval narrows with smaller population deviation and greater sample 
size, indicating higher estimate accuracy.

(4)
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Exhibit 14   Illustration of Confidence Intervals
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In practice, the assumption that the sampling distribution of the sample mean is 
at least approximately normal is frequently reasonable, either because the underly-
ing distribution is approximately normal or because we have a large sample and the 
central limit theorem applies. Rarely do we know the population variance in practice, 
however. When the population variance is unknown but the sample mean is at least 
approximately normally distributed, we have two acceptable ways to calculate the 
confidence interval for the population mean. We will soon discuss the more conserva-
tive approach, which is based on Student’s t-distribution (the t-distribution, for short 
and covered earlier). In investment literature, it is the most frequently used approach 
in both estimation and hypothesis tests concerning the mean when the population 
variance is not known, whether sample size is small or large.

A second approach to confidence intervals for the population mean, based on the 
standard normal distribution, is the z-alternative. It can be used only when sample 
size is large. (In general, a sample size of 30 or larger may be considered large.) In 
contrast to the confidence interval given in Equation 4, this confidence interval uses 
the sample standard deviation, s, in computing the standard error of the sample mean 
(Equation 2).

■■ Confidence Intervals for the Population Mean—The z-Alternative (Large 
Sample, Population Variance Unknown). A 100(1 − α)% confidence interval 
for population mean µ when sampling from any distribution with unknown 
variance and when sample size is large is given by

X z s
n

� � 2

Because this type of confidence interval appears quite often, we illustrate its calcu-
lation in Example 8.

(5)
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EXAMPLE 8  

Confidence Interval for the Population Mean of Sharpe 
Ratios—z-Statistic
Suppose an investment analyst takes a random sample of US equity mutual 
funds and calculates the average Sharpe ratio. The sample size is 100, and 
the average Sharpe ratio is 0.45. The sample has a standard deviation of 0.30. 
Calculate and interpret the 90% confidence interval for the population mean of 
all US equity mutual funds by using a reliability factor based on the standard 
normal distribution.

The reliability factor for a 90% confidence interval, as given earlier, is z0.05 
= 1.65. The confidence interval will be

X z s
n

� � � � � � � � �0 05 0 45 1 65 0 30
100

0 45 1 65 0 03 0 45 0 0495. . . . . . . . .

The confidence interval spans 0.4005 to 0.4995, or 0.40 to 0.50, carrying 
two decimal places. The analyst can say with 90% confidence that the interval 
includes the population mean.

In this example, the analyst makes no specific assumption about the prob-
ability distribution describing the population. Rather, the analyst relies on the 
central limit theorem to produce an approximate normal distribution for the 
sample mean.

As Example 8 shows, even if we are unsure of the underlying population distri-
bution, we can still construct confidence intervals for the population mean as long as 
the sample size is large because we can apply the central limit theorem.

We now turn to the conservative alternative, using the t-distribution, for con-
structing confidence intervals for the population mean when the population variance 
is not known. For confidence intervals based on samples from normally distributed 
populations with unknown variance, the theoretically correct reliability factor is based 
on the t-distribution. Using a reliability factor based on the t-distribution is essential 
for a small sample size. Using a t reliability factor is appropriate when the population 
variance is unknown, even when we have a large sample and could use the central 
limit theorem to justify using a z reliability factor. In this large sample case, the t-dis-
tribution provides more- conservative (wider) confidence intervals.

Suppose we sample from a normal distribution. The ratio z X n� �� � � �� �  is 

distributed normally with a mean of 0 and standard deviation of 1; however, the 
ratio t X s n� �� � � ��  follows the t-distribution with a mean of 0 and n − 1 degrees 

of freedom. The ratio represented by t is not normal because t is the ratio of two 
random variables, the sample mean and the sample standard deviation. The definition 
of the standard normal random variable involves only one random variable, the sample 
mean.

Values for the t-distribution are available from Excel, using the function T.INV(p,DF). 
For each degree of freedom, five values are given: t0.10, t0.05, t0.025, t0.01, and t0.005. The 
values for t0.10, t0.05, t0.025, t0.01, and t0.005 are such that, respectively, 0.10, 0.05, 0.025, 
0.01, and 0.005 of the probability remains in the right tail, for the specified number 
of degrees of freedom. For example, for df = 30, t0.10 = 1.310, t0.05 = 1.697, t0.025 = 
2.042, t0.01 = 2.457, and t0.005 = 2.750.
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We now give the form of confidence intervals for the population mean using the 
t-distribution.

■■ Confidence Intervals for the Population Mean (Population Variance 
Unknown)—t-Distribution. If we are sampling from a population with 
unknown variance and either of the conditions below holds:

■● the sample is large, or
■● the sample is small, but the population is normally distributed, or approxi-

mately normally distributed,

then a 100(1 − α)% confidence interval for the population mean µ is given by

X t s
n

� � 2

where the number of degrees of freedom for tα/2 is n − 1 and n is the sample 
size.

Example 9 reprises the data of Example 8 but uses the t-statistic rather than the 
z-statistic to calculate a confidence interval for the population mean of Sharpe ratios.

EXAMPLE 9  

Confidence Interval for the Population Mean of Sharpe 
Ratios—t-Statistic
As in Example  8, an investment analyst seeks to calculate a 90% confidence 
interval for the population mean Sharpe ratio of US equity mutual funds based 
on a random sample of 100 US equity mutual funds. The sample mean Sharpe 
ratio is 0.45, and the sample standard deviation of the Sharpe ratios is 0.30. Now 
recognizing that the population variance of the distribution of Sharpe ratios 
is unknown, the analyst decides to calculate the confidence interval using the 
theoretically correct t-statistic.

Because the sample size is 100, df = 99. Using the Excel function T.INV(0.05,99), 
t0.05 = 1.66. This reliability factor is slightly larger than the reliability factor z0.05 
= 1.65 that was used in Example 8. The confidence interval will be

X t s
n

� � � � � � � � �0 05 0 45 1 66 0 30
100

0 45 1 66 0 03 0 45 0 0498. . . . . . . . .

The confidence interval spans 0.4002 to 0.4998, or 0.40 to 0.50, carrying two 
decimal places. To two decimal places, the confidence interval is unchanged 
from the one computed in Example 8.

Exhibit 15 summarizes the various reliability factors that we have used.

Exhibit 15   Basis of Computing Reliability Factors

Sampling from
Statistic for Small 

Sample Size
Statistic for Large 

Sample Size

Normal distribution with known 
variance

z z

Normal distribution with 
unknown variance

t t*

(6)

(continued)
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Sampling from
Statistic for Small 

Sample Size
Statistic for Large 

Sample Size

Non- normal distribution with 
known variance

not available z

Non- normal distribution with 
unknown variance

not available t*

* Use of z also acceptable.

Exhibit 16 shows a flowchart that helps determine what statistics should be used 
to produce confidence intervals under different conditions.

Exhibit 16   Determining Statistics for Confidence Intervals

Large Sample
Size?

Population
Variance Known?

Normal
Distribution?

Population
Variance Known?

t
(z is acceptable)

z

z t

Not Available

No

NoNo

No

Yes

Yes Yes

Yes

5.1 Selection of Sample Size
What choices affect the width of a confidence interval? To this point we have discussed 
two factors that affect width: the choice of statistic (t or z) and the choice of degree of 
confidence (affecting which specific value of t or z we use). These two choices deter-
mine the reliability factor. (Recall that a confidence interval has the structure Point 
estimate ± Reliability factor × Standard error.)

The choice of sample size also affects the width of a confidence interval. All else 
equal, a larger sample size decreases the width of a confidence interval. Recall the 
expression for the standard error of the sample mean:

Standard error of the sample mean Sample standard deviatio
=

nn
Sample size

Exhibit 15   (Continued)
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We see that the standard error varies inversely with the square root of sample size. As 
we increase sample size, the standard error decreases and consequently the width of 
the confidence interval also decreases. The larger the sample size, the greater precision 
with which we can estimate the population parameter.

At a given degree of confidence (1 − α), we can determine the sample size needed 
to obtain a desired width for a confidence interval. Define E = Reliability factor × 
Standard error; then 2E is the confidence interval’s width. The smaller E is, the smaller 
the width of the confidence interval. Accordingly, the sample size to obtain a desired 
value of E at a given degree of confidence (1 − α) can be derived as n = [(t × s)/E]2. 
It is worth noting that appropriate sample size is also needed for performing a valid 
power analysis and determining the minimum detectable effect in hypothesis testing, 
concepts that will be covered at a later stage.

All else equal, larger samples are good, in that sense. In practice, however, two 
considerations may operate against increasing sample size. First, as we saw earlier 
concerning the Sharpe ratio, increasing the size of a sample may result in sampling 
from more than one population. Second, increasing sample size may involve additional 
expenses that outweigh the value of additional precision. Thus three issues that the 
analyst should weigh in selecting sample size are the need for precision, the risk of 
sampling from more than one population, and the expenses of different sample sizes.

EXAMPLE 10  

A Money Manager Estimates Net Client Inflows
A money manager wants to obtain a 95% confidence interval for fund inflows and 
outflows over the next six months for his existing clients. He begins by calling 
a random sample of 10 clients and inquiring about their planned additions to 
and withdrawals from the fund. The manager then computes the change in cash 
flow for each client sampled as a percentage change in total funds placed with 
the manager. A positive percentage change indicates a net cash inflow to the 
client’s account, and a negative percentage change indicates a net cash outflow 
from the client’s account. The manager weights each response by the relative 
size of the account within the sample and then computes a weighted average.

As a result of this process, the money manager computes a weighted average 
of 5.5%. Thus, a point estimate is that the total amount of funds under manage-
ment will increase by 5.5% in the next six months. The standard deviation of the 
observations in the sample is 10%. A histogram of past data looks fairly close to 
normal, so the manager assumes the population is normal.

1 Calculate a 95% confidence interval for the population mean and interpret 
your findings.

2 The manager decides to see what the confidence interval would look like 
if he had used a sample size of 20 or 30 and found the same mean (5.5%) 
and standard deviation (10%).

 Compute the confidence interval for sample sizes of 20 and 30. For the 
sample size of 30, use Equation 6.

3 Interpret your results from Parts 1 and 2.

Solution to 1:
Because the population variance is unknown and the sample size is small, the 
manager must use the t-statistic in Equation 6 to calculate the confidence interval. 
Based on the sample size of 10, df = n − 1 = 10 − 1 = 9. For a 95% confidence 
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interval, he needs to use the value of t0.025 for df = 9. This value is 2.262, using 
Excel function T.INV(0.025,9). Therefore, a 95% confidence interval for the 
population mean is

X t s
n

� � �

� � � �
� �

0 025 5 5 2 26210
10

5 5 2 262 3 162
5 5 7 15

. . % . %

. % . .

. % . %

The confidence interval for the population mean spans −1.65% to +12.65%. 
The manager can be confident at the 95% level that this range includes the 
population mean.

Solution to 2:
Exhibit 17 gives the calculations for the three sample sizes.

Exhibit 17   The 95% Confidence Interval for Three Sample Sizes

Distribution
95% 

Confidence Interval
Lower 
Bound

Upper 
Bound

Relative 
Size

t(n = 10) 5.5% ± 2.262(3.162) −1.65% 12.65% 100.0%
t(n = 20) 5.5% ± 2.093(2.236) 0.82 10.18 65.5
t(n = 30) 5.5% ± 2.045(1.826) 1.77 9.23 52.2

Solution to 3:
The width of the confidence interval decreases as we increase the sample 
size. This decrease is a function of the standard error becoming smaller as n 
increases. The reliability factor also becomes smaller as the number of degrees 
of freedom increases. The last column of Exhibit 17 shows the relative size of 
the width of confidence intervals based on n = 10 to be 100%. Using a sample 
size of 20 reduces the confidence interval’s width to 65.5% of the interval width 
for a sample size of 10. Using a sample size of 30 cuts the width of the interval 
almost in half. Comparing these choices, the money manager would obtain the 
most precise results using a sample of 30.

RESAMPLING

 i. Describe the use of resampling (bootstrap, jackknife) to estimate the sampling 
distribution of a statistic

Earlier, we demonstrated how to find the standard error of the sample mean, which can 
be computed using Equation 4 based on the central limit theorem. We now introduce 
a computational tool called resampling, which repeatedly draws samples from the 
original observed data sample for the statistical inference of population parameters. 
Bootstrap, one of the most popular resampling methods, uses computer simulation 
for statistical inference without using an analytical formula such as a z-statistic or 
t-statistic.

6
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The idea behind bootstrap is to mimic the process of performing random sampling 
from a population, similar to what we have shown earlier, to construct the sampling 
distribution of the sample mean. The difference lies in the fact that we have no knowl-
edge of what the population looks like, except for a sample with size n drawn from the 
population. Because a random sample offers a good representation of the population, 
we can simulate sampling from the population by sampling from the observed sample. 
In other words, the bootstrap mimics the process by treating the randomly drawn 
sample as if it were the population.

The right- hand side of Exhibit 18 illustrates the process. In bootstrap, we repeat-
edly draw samples from the original sample, and each resample is of the same size as 
the original sample. Note that each item drawn is replaced for the next draw (i.e., the 
identical element is put back into the group so that it can be drawn more than once). 
Assuming we are looking to find the standard error of sample mean, we take many 
resamples and then compute the mean of each resample. Note that although some 
items may appear several times in the resamples, other items may not appear at all.

Exhibit 18   Bootstrap Resampling

True Population Estimated
Population

True Sampling Distribution

Sample 1

Estimate 1

Sample 2 ...

Estimate 2

Sample n

Sample

Estimate n

Bootstrap Sampling Distribution

Bootstrap
Sample 1

Estimate 1

Bootstrap
Sample 2

Bootstrap
Sample “B”...

Estimate 2 Estimate B

Subsequently, we construct a sampling distribution with these resamples. The 
bootstrap sampling distribution (right- hand side of Exhibit 18) will approximate the 
true sampling distribution. We estimate the standard error of the sample mean using 
Equation 7. Note that to distinguish the foregoing resampling process from other types 
of resampling, it is often called model- free resampling or non- parametric resampling.

s
BX bb

B
�

�
�

��1
1

2

1
( )� �

where

 S
X

 is the estimate of the standard error of the sample mean

 B denotes the number of resamples drawn from the original sample.
 θ b  denotes the mean of a resample

 θ  denotes the mean across all the resample means

(7)
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Bootstrap is one of the most powerful and widely used tools for statistical inference. 
As we have explained, it can be used to estimate the standard error of sample mean. 
Similarly, bootstrap can be used to find the standard error or construct confidence 
intervals for the statistic of other population parameters, such as the median, which 
does not apply to the previously discussed methodologies. Compared with conventional 
statistical methods, bootstrap does not rely on an analytical formula to estimate the 
distribution of the estimators. It is a simple but powerful method for any complicated 
estimators and particularly useful when no analytical formula is available. In addition, 
bootstrap has potential advantages in accuracy. Given these advantages, bootstrap 
can be applied widely in finance, such as for historical simulations in asset allocation 
or in gauging an investment strategy’s performance against a benchmark.

EXAMPLE 11   

Bootstrap Resampling Illustration
The following table displays a set of 12 monthly returns of a rarely traded stock, 
shown in Column A. Our aim is to calculate the standard error of the sample 
mean. Using the bootstrap resampling method, a series of bootstrap samples, 
labelled as “resamples” (with replacement) are drawn from the sample of 12 
returns. Notice how some of the returns from data sample in Column A feature 
more than once in some of the resamples (for example, 0.055 features twice in 
Resample 1).

Column 
A

Resample 
1

Resample 
2

Resample 
3

Resample 
1,000

−0.096 0.055 −0.096 −0.033 ….. −0.072
−0.132 −0.033 0.055 −0.132 ….. 0.255
−0.191 0.255 0.055 −0.157 ….. 0.055
−0.096 −0.033 −0.157 0.255 ….. 0.296

0.055 0.255 −0.096 −0.132 ….. 0.055
−0.053 −0.157 −0.053 −0.191 ….. −0.096
−0.033 −0.053 −0.096 0.055 ….. 0.296

0.296 −0.191 −0.132 0.255 ….. −0.132
0.055 −0.132 −0.132 0.296 ….. 0.055

−0.072 −0.096 0.055 −0.096 ….. −0.096
0.255 0.055 −0.072 0.055 ….. −0.191

−0.157 −0.157 −0.053 −0.157 ….. 0.055

Sample 
mean

−0.019 −0.060 0.001 ….. 0.040

Drawing 1,000 such samples, we obtain 1,000 sample means. The mean across 
all resample means is −0.01367. The sum of squares of the differences between 

each sample mean and the mean across all resample means ( ( )� �

bb

B
�

�� 2
1

) 

is 1.94143. Using Equation 7, we calculate an estimate of the standard error of 
the sample mean:

s
BX

b
b

B
�

�
� � � �

��1

1

1

999
1 94143 0 044082

1
( ) . .� �
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Jackknife is another resampling technique for statistical inference of population 
parameters. Unlike bootstrap, which repeatedly draws samples with replacement, 
jackknife samples are selected by taking the original observed data sample and leaving 
out one observation at a time from the set (and not replacing it). Jackknife method is 
often used to reduce the bias of an estimator, and other applications include finding 
the standard error and confidence interval of an estimator. According to its compu-
tation procedure, we can conclude that jackknife produces similar results for every 
run, whereas bootstrap usually gives different results because bootstrap resamples 
are randomly drawn. For a sample of size n, jackknife usually requires n repetitions, 
whereas with bootstrap, we are left to determine how many repetitions are appropriate.

EXAMPLE 12  

An analyst in a real estate investment company is researching the housing market 
of the Greater Boston area. From a sample of collected house sale price data 
in the past year, she estimates the median house price of the area. To find the 
standard error of the estimated median, she is considering two options:

Option 1 The standard error of the sample median can be given by
s
n

, 

where s denotes the sample standard deviation and n denotes 
the sample size.

Option 2 Apply the bootstrap method to construct the sampling distri-
bution of the sample median, and then compute the standard 
error by using Equation 7.

 Which of the following statements is accurate?
A Option 1 is suitable to find the standard error of the sample median.
B Option 2 is suitable to find the standard error of the sample median.
C Both options are suitable to find the standard error of the sample 

median.

Solution: 
B is correct. Option 1 is valid for estimating the standard error of the sample 
mean but not for that of the sample median, which is not based on the given 
formula. Thus, both A and C are incorrect. The bootstrap method is a simple 
way to find the standard error of an estimator even if no analytical formula is 
available or it is too complicated.

Having covered many of the fundamental concepts of sampling and estimation, 
we are in a good position to focus on sampling issues of special concern to analysts. 
The quality of inferences depends on the quality of the data as well as on the quality 
of the sampling plan used. Financial data pose special problems, and sampling plans 
frequently reflect one or more biases. The next section discusses these issues.
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DATA SNOOPING BIAS, SAMPLE SELECTION BIAS, 
LOOK- AHEAD BIAS, AND TIME- PERIOD BIAS

j describe the issues regarding selection of the appropriate sample size, data 
snooping bias, sample selection bias, survivorship bias, look- ahead bias, and 
time- period bias

We have already seen that the selection of sample period length may raise the issue 
of sampling from more than one population. There are, in fact, a range of challenges 
to valid sampling that arise in working with financial data. In this section we discuss 
several such sampling- related issues: data snooping bias, sample selection group of 
biases (including survivorship bias), look- ahead bias, and time- period bias. All of these 
issues are important for point and interval estimation and hypothesis testing. As we 
will see, if the sample is biased in any way, then point and interval estimates and any 
other conclusions that we draw from the sample will be in error.

7.1 Data Snooping Bias
Data snooping relates to overuse of the same or related data in ways that we shall 
describe shortly. Data snooping bias refers to the errors that arise from such misuse of 
data. Investment strategies that reflect data snooping biases are often not successful if 
applied in the future. Nevertheless, both investment practitioners and researchers in 
general have frequently engaged in data snooping. Analysts thus need to understand 
and guard against this problem.

Data snooping is the practice of determining a model by extensive searching 
through a dataset for statistically significant patterns (that is, repeatedly “drilling” in 
the same data until finding something that appears to work). In exercises involving 
statistical significance, we set a significance level, which is the probability of rejecting 
the hypothesis we are testing when the hypothesis is in fact correct. Because rejecting 
a true hypothesis is undesirable, the investigator often sets the significance level at a 
relatively small number, such as 0.05 or 5%.

Suppose we test the hypothesis that a variable does not predict stock returns, 
and we test in turn 100 different variables. Let us also suppose that in truth, none 
of the 100 variables has the ability to predict stock returns. Using a 5% significance 
level in our tests, we would still expect that 5 out of 100 variables would appear to 
be significant predictors of stock returns because of random chance alone. We have 
mined the data to find some apparently significant variables. In essence, we have 
explored the same data again and again until we found some after- the- fact pattern 
or patterns in the dataset. This is the sense in which data snooping involves overuse 
of data. If we were to report only the significant variables without also reporting the 
total number of variables tested that were unsuccessful as predictors, we would be 
presenting a very misleading picture of our findings. Our results would appear to be 
far more significant than they actually were, because a series of tests such as the one 
just described invalidates the conventional interpretation of a given significance level 
(such as 5%), according to the theory of inference. Datasets in the Big Data space are 
often blindly used to make statistical inferences without a proper hypothesis testing 
framework, which may lead to inferring higher- than- justified significance.

How can we investigate the presence of data snooping bias? Typically we can 
split the data into three separate datasets: the training dataset, the validation dataset, 
and the test dataset. The training dataset is used to build a model and fit the model 
parameters. The validation dataset is used to evaluate the model fit while tuning the 

7
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model parameters. The test dataset is to provide an out- of- sample test to evaluate 
the final model fit. If a variable or investment strategy is the result of data snooping, 
it should generally not be significant in out- of- sample tests.

A variable or investment strategy that is statistically and economically significant 
in out- of- sample tests, and that has a plausible economic basis, may be the basis for a 
valid investment strategy. Caution is still warranted, however. The most crucial out- of- 
sample test is future investment success. It should be noted that if the strategy becomes 
known to other investors, prices may adjust so that the strategy, however well tested, 
does not work in the future. To summarize, the analyst should be aware that many 
apparently profitable investment strategies may reflect data snooping bias and thus 
be cautious about the future applicability of published investment research results.

UNTANGLING THE EXTENT OF DATA SNOOPING

To assess the significance of an investment strategy, we need to know how many 
unsuccessful strategies were tried not only by the current investigator but also by 
previous investigators using the same or related datasets. Much research, in practice, 
closely builds on what other investigators have done, and so reflects intergenerational 
data mining (McQueen and Thorley, 1999) that involves using information developed 
by previous researchers using a dataset to guide current research using the same or a 
related dataset. Analysts have accumulated many observations about the peculiarities of 
many financial datasets, and other analysts may develop models or investment strategies 
that will tend to be supported within a dataset based on their familiarity with the prior 
experience of other analysts. As a consequence, the importance of those new results may 
be overstated. Research has suggested that the magnitude of this type of data- mining 
bias may be considerable.

McQueen and Thorley (1999) explored data mining in the context of the popular 
Motley Fool “Foolish Four” investment strategy, a version of the Dow Dividend Strategy 
tuned by its developers to exhibit an even higher arithmetic mean return than the 
original Dow Dividend Strategy. The Foolish Four strategy claimed to show significant 
investment returns over 20 years starting in 1973, and its proponents claimed that the 
strategy should have similar returns in the future. McQueen and Thorley highlighted 
the data- mining issues in that research and presented two signs that can warn analysts 
about the potential existence of data mining:

■■ Too much digging/too little confidence. The testing of many variables by the 
researcher is the “too much digging” warning sign of a data- mining problem. 
Although the number of variables examined may not be reported, we should 
look closely for verbal hints that the researcher searched over many variables. The 
use of terms such as “we noticed (or noted) that” or “someone noticed (or noted) 
that,” with respect to a pattern in a dataset, should raise suspicions that the 
researchers were trying out variables based on their own or others’ observations 
of the data.

■■ No story/no future. The absence of an explicit economic rationale for a variable or 
trading strategy is the “no story” warning sign of a data- mining problem. Without 
a plausible economic rationale or story for why a variable should work, the vari-
able is unlikely to have predictive power. What if we do have a plausible economic 
explanation for a significant variable? McQueen and Thorley caution that a plau-
sible economic rationale is a necessary but not a sufficient condition for a trading 
strategy to have value. As we mentioned earlier, if the strategy is publicized, 
market prices may adjust to reflect the new information as traders seek to exploit 
it; as a result, the strategy may no longer work.
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7.2 Sample Selection Bias
When researchers look into questions of interest to analysts or portfolio managers, 
they may exclude certain stocks, bonds, portfolios, or periods from the analysis for 
various reasons—perhaps because of data availability. When data availability leads 
to certain assets being excluded from the analysis, we call the resulting problem 
sample selection bias. For example, you might sample from a database that tracks 
only companies currently in existence. Many mutual fund databases, for instance, 
provide historical information about only those funds that currently exist. Databases 
that report historical balance sheet and income statement information suffer from 
the same sort of bias as the mutual fund databases: Funds or companies that are no 
longer in business do not appear there. So, a study that uses these types of databases 
suffers from a type of sample selection bias known as survivorship bias.

The issue of survivorship bias has also been raised in relation to international 
indexes, particularly those representing less established markets. Some of these markets 
have suffered complete loss of value as a result of hyperinflation, nationalization or 
confiscation of industries, or market failure. Measuring the performance of markets 
or particular investments that survive over time will overstate returns from investing. 
There is, of course, no way of determining in advance which markets will fail or survive.

Survivorship bias sometimes appears when we use both stock price and accounting 
data. For example, many studies in finance have used the ratio of a company’s market 
price to book equity per share (i.e., the price- to- book ratio, P/B) and found that P/B 
is inversely related to a company’s returns. P/B is also used to create many popular 
value and growth indexes. The “value” indexes, for example, would include companies 
trading on relatively low P/B. If the database that we use to collect accounting data 
excludes failing companies, however, a survivorship bias might result. It can be argued 
that failing stocks would be expected to have low returns and low P/Bs. If we exclude 
failing stocks, then those stocks with low P/Bs that are included in the index will have 
returns that are higher on average than if all stocks with low P/Bs were included. As 
shown in Exhibit 19, without failing stocks (shown in the bottom left part), we can 
fit a line with a negative slope indicating that P/B is inversely related to a company’s 
stock return. With all the companies included, however, the fitted line (horizontal, 
dotted) shows an insignificant slope coefficient.

This bias would then be responsible for some of the traditional findings of an 
inverse relationship between average return and P/B. Researchers should be aware 
of any biases potentially inherent in a sample.
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Exhibit 19   Survivorship Bias
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DELISTINGS AND BIAS

A sample can also be biased because of the removal (or delisting) of a company’s stock 
from an exchange. For example, the Center for Research in Security Prices at the University 
of Chicago is a major provider of return data used in academic research. When a delisting 
occurs, CRSP attempts to collect returns for the delisted company. Many times, however, 
it cannot do so because of the difficulty involved; CRSP must simply list delisted company 
returns as missing. A study in the Journal of Finance by Shumway and Warther (1999) 
documented the bias caused by delisting for CRSP NASDAQ return data. The authors 
showed that delistings associated with poor company performance (e.g., bankruptcy) 
are missed more often than delistings associated with good or neutral company perfor-
mance (e.g., merger or moving to another exchange). In addition, delistings occur more 
frequently for small companies.

Sample selection bias occurs even in markets where the quality and consistency 
of the data are quite high. Newer asset classes such as hedge funds may present even 
greater problems of sample selection bias. Hedge funds are a heterogeneous group of 
investment vehicles typically organized so as to be free from regulatory oversight. In 
general, hedge funds are not required to publicly disclose performance (in contrast to, 
say, mutual funds). Hedge funds themselves decide whether they want to be included 
in one of the various databases of hedge fund performance. Hedge funds with poor 
track records clearly may not wish to make their records public, creating a problem 
of self- selection bias in hedge fund databases. Further, as pointed out by Fung and 
Hsieh (2002), because only hedge funds with good records will volunteer to enter a 
database, in general, overall past hedge fund industry performance will tend to appear 
better than it really is. Furthermore, many hedge fund databases drop funds that go out 
of business, creating survivorship bias in the database. Even if the database does not 
drop defunct hedge funds, in the attempt to eliminate survivorship bias, the problem 
remains of hedge funds that stop reporting performance because of poor results or 
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because successful funds no longer want new cash inflows. In some circumstances, 
implicit selection bias may exist because of a threshold enabling self- selection. For 
example, compared with smaller exchanges, the NYSE has higher stock listing require-
ments. Choosing NYSE- listed stocks may introduce an implicit quality bias into the 
analysis. Although the bias is less obvious, it is important for generalizing findings.

A variation of selection bias is backfill bias. For example, when a new hedge 
fund is added to a given index, the fund’s past performance may be backfilled into 
the index’s database, even though the fund was not included in the database in the 
previous year. Usually a new fund starts contributing data after a period of good 
performance, so adding the fund’s instant history into the index database may inflate 
the index performance.

7.3 Look- Ahead Bias
A test design is subject to look- ahead bias if it uses information that was not avail-
able on the test date. For example, tests of trading rules that use stock market returns 
and accounting balance sheet data must account for look- ahead bias. In such tests, 
a company’s book value per share is commonly used to construct the P/B variable. 
Although the market price of a stock is available for all market participants at the 
same point in time, fiscal year- end book equity per share might not become publicly 
available until sometime in the following quarter. One solution to mitigate the look- 
ahead bias is to use point- in- time (PIT) data when possible. PIT data is stamped with 
the date when it was recorded or released. In the previous example, the PIT data of 
P/B would be accompanied with the date of company filing date or press release date, 
rather than the end date of the fiscal quarter the P/B data represents. It is worth not-
ing that the look- ahead bias could also be implicitly introduced. For example, when 
normalizing input data by deducting the mean and dividing it by standard deviation, 
we must ensure that the standard deviation of the training data is used as the proxy 
for standard deviation in validation and test data sets. Using standard deviation of 
validation or test data to normalize them will implicitly introduce a look- ahead bias 
as the variance of future data is inappropriately used.

7.4 Time- Period Bias
A test design is subject to time- period bias if it is based on a period that may make 
the results period specific. A short time series is likely to give period- specific results 
that may not reflect a longer period. A long time series may give a more accurate 
picture of true investment performance; its disadvantage lies in the potential for a 
structural change occurring during the time frame that would result in two different 
return distributions. In this situation, the distribution that would reflect conditions 
before the change differs from the distribution that would describe conditions after 
the change. Regime changes, such as low versus high volatility regimes or low versus 
high interest rate regimes, are highly influential to asset classes. Inferences based on 
data influenced by one regime, and thus not appropriately distributed, should account 
for how the regime may bias the inferences.

EXAMPLE 13  

Biases in Investment Research
An analyst is reviewing the empirical evidence on historical equity returns 
in the Eurozone (European countries that use the euro). She finds that value 
stocks (i.e., those with low P/Bs) outperformed growth stocks (i.e., those with 
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high P/Bs) in recent periods. After reviewing the Eurozone market, the analyst 
wonders whether value stocks might be attractive in the United Kingdom. She 
investigates the performance of value and growth stocks in the UK market for 
a 10- year period. To conduct this research, the analyst does the following:

■■ obtains the current composition of the Financial Times Stock Exchange 
(FTSE) All Share Index, a market- capitalization- weighted index;

■■ eliminates the companies that do not have December fiscal year- ends;
■■ uses year- end book values and market prices to rank the remaining uni-

verse of companies by P/Bs at the end of the year;
■■ based on these rankings, divides the universe into 10 portfolios, each of 

which contains an equal number of stocks;
■■ calculates the equal- weighted return of each portfolio and the return for 

the FTSE All Share Index for the 12 months following the date each rank-
ing was made; and

■■ subtracts the FTSE returns from each portfolio’s returns to derive excess 
returns for each portfolio.

She discusses the research process with her supervisor, who makes two 
comments:

■■ The proposed process may introduce survivorship bias into her analysis.
■■ The proposed research should cover a longer period.

1 Which of the following best describes the supervisor’s first comment?
A The comment is false. The proposed method is designed to avoid sur-

vivorship bias.
B The comment is true, because she is planning to use the current list 

of FTSE stocks rather than the actual list of stocks that existed at the 
start of each year.

C The comment is true, because the test design uses information 
unavailable on the test date.

2 What bias is the supervisor concerned about when making the second 
comment?
A Time period bias, because the results may be period specific
B Look- ahead bias, because the bias could be reduced or eliminated if 

one uses a longer period
C Survivorship bias, because the bias would become less relevant over 

longer periods

Solution to 1:
B is correct because the research design is subject to survivorship bias if it fails to 
account for companies that have gone bankrupt, merged, or otherwise departed 
the database. Using the current list of FTSE stocks rather than the actual list 
of stocks that existed at the start of each year means that the computation of 
returns excluded companies removed from the index. The performance of the 
portfolios with the lowest P/B is subject to survivorship bias and may be over-
stated. At some time during the testing period, those companies not currently 
in existence were eliminated from testing. They would probably have had low 
prices (and low P/Bs) and poor returns.
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A is incorrect because the method is not designed to avoid survivorship bias. 
C is incorrect because the fact that the test design uses information unavailable 
on the test date relates to look- ahead bias. A test design is subject to look- ahead 
bias if it uses information unavailable on the test date. This bias would make 
a strategy based on the information appear successful, but it assumes perfect 
forecasting ability.

Solution to 2:
A is correct. A test design is subject to time- period bias if it is based on a period 
that may make the results period specific. Although the research covered a 
period of 10 years, that period may be too short for testing an anomaly. Ideally, 
an analyst should test market anomalies over several market cycles to ensure 
that results are not period specific. This bias can favor a proposed strategy if 
the period chosen was favorable to the strategy.

SUMMARY
In this reading, we have presented basic concepts and results in sampling and esti-
mation. We have also emphasized the challenges faced by analysts in appropriately 
using and interpreting financial data. As analysts, we should always use a critical 
eye when evaluating the results from any study. The quality of the sample is of the 
utmost importance: If the sample is biased, the conclusions drawn from the sample 
will be in error.

■■ To draw valid inferences from a sample, the sample should be random.
■■ In simple random sampling, each observation has an equal chance of being 

selected. In stratified random sampling, the population is divided into subpopu-
lations, called strata or cells, based on one or more classification criteria; simple 
random samples are then drawn from each stratum.

■■ Stratified random sampling ensures that population subdivisions of interest are 
represented in the sample. Stratified random sampling also produces more- 
precise parameter estimates than simple random sampling.

■■ Convenience sampling selects an element from the population on the basis 
of whether or not it is accessible to a researcher or how easy it is to access. 
Because convenience sampling presents the advantage of collecting data quickly 
at a low cost, it is a suitable sampling plan for small- scale pilot studies.

■■ Judgmental sampling may yield skewed results because of the bias of research-
ers, but its advantages lie in the fact that in some circumstances, the specialty of 
researchers and their judgmental can lead them directly to the target population 
of interest within time constraints.

■■ The central limit theorem states that for large sample sizes, for any underlying 
distribution for a random variable, the sampling distribution of the sample 
mean for that variable will be approximately normal, with mean equal to the 
population mean for that random variable and variance equal to the population 
variance of the variable divided by sample size.

■■ Based on the central limit theorem, when the sample size is large, we can com-
pute confidence intervals for the population mean based on the normal distri-
bution regardless of the distribution of the underlying population. In general, a 
sample size of 30 or larger can be considered large.
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■■ An estimator is a formula for estimating a parameter. An estimate is a particular 
value that we calculate from a sample by using an estimator.

■■ Because an estimator or statistic is a random variable, it is described by some 
probability distribution. We refer to the distribution of an estimator as its sam-
pling distribution. The standard deviation of the sampling distribution of the 
sample mean is called the standard error of the sample mean.

■■ The desirable properties of an estimator are unbiasedness (the expected value 
of the estimator equals the population parameter), efficiency (the estimator has 
the smallest variance), and consistency (the probability of accurate estimates 
increases as sample size increases).

■■ The two types of estimates of a parameter are point estimates and interval esti-
mates. A point estimate is a single number that we use to estimate a parameter. 
An interval estimate is a range of values that brackets the population parameter 
with some probability.

■■ A confidence interval is an interval for which we can assert with a given prob-
ability 1 − α, called the degree of confidence, that it will contain the parameter 
it is intended to estimate. This measure is often referred to as the 100(1 − α)% 
confidence interval for the parameter.

■■ A 100(1 − α)% confidence interval for a parameter has the following structure: 
Point estimate ± Reliability factor × Standard error, where the reliability factor 
is a number based on the assumed distribution of the point estimate and the 
degree of confidence (1 − α) for the confidence interval and where standard 
error is the standard error of the sample statistic providing the point estimate.

■■ A 100(1 − α)% confidence interval for population mean µ when sampling from a 

normal distribution with known variance σ2 is given by X
n

� z�
�

2 , where 

zα/2 is the point of the standard normal distribution such that α/2 remains in 
the right tail.

■■ A random sample of size n is said to have n − 1 degrees of freedom for estimat-
ing the population variance, in the sense that there are only n − 1 independent 
deviations from the mean on which to base the estimate.

■■ A 100(1 − α)% confidence interval for the population mean µ when sampling 
from a normal distribution with unknown variance (a t-distribution confidence 
interval) is given by X t s n� � �� 2 , where tα/2 is the point of the t-distribution 

such that α/2 remains in the right tail and s is the sample standard deviation. 
This confidence interval can also be used, because of the central limit theorem, 
when dealing with a large sample from a population with unknown variance 
that may not be normal.

■■ We may use the confidence interval X z s n� � �� 2  as an alternative to the 

t-distribution confidence interval for the population mean when using a large 
sample from a population with unknown variance. The confidence interval 
based on the z-statistic is less conservative (narrower) than the corresponding 
confidence interval based on a t-distribution.

■■ Bootstrap and jackknife are simple but powerful methods for statistical infer-
ence, and they are particularly useful when no analytical formula is available. 
Bootstrap constructs the sampling distribution of an estimator by repeatedly 
drawing samples from the original sample to find standard error and confidence 
interval. Jackknife draws repeated samples while leaving out one observation at 
a time from the set, without replacing it.
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■■ Three issues in the selection of sample size are the need for precision, the risk 
of sampling from more than one population, and the expenses of different sam-
ple sizes.

■■ Data snooping bias comes from finding models by repeatedly searching through 
databases for patterns.

■■ Sample selection bias occurs when data availability leads to certain assets being 
excluded from the analysis, we call the resulting problem

■■ Survivorship bias is a subset of sample selection bias and occurs if compa-
nies are excluded from the analysis because they have gone out of business or 
because of reasons related to poor performance.

■■ Self- selection bias reflects the ability of entities to decide whether or not they 
wish to report their attributes or results and be included in databases or sam-
ples. Implicit selection bias is one type of selection bias introduced through the 
presence of a threshold that filters out some unqualified members. A subset of 
selection bias is backfill bias, in which past data, not reported or used before, is 
backfilled into an existing database.

■■ Look- ahead bias exists if the model uses data not available to market partici-
pants at the time the market participants act in the model.

■■ Time- period bias is present if the period used makes the results period specific 
or if the period used includes a point of structural change.
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PRACTICE PROBLEMS

1 Perkiomen Kinzua, a seasoned auditor, is auditing last year’s transactions for 
Conemaugh Corporation. Unfortunately, Conemaugh had a very large number 
of transactions last year, and Kinzua is under a time constraint to finish the 
audit. He decides to audit only the small subset of the transaction population 
that is of interest and to use sampling to create that subset.

 The most appropriate sampling method for Kinzua to use is:
A judgmental sampling.
B systematic sampling.
C convenience sampling.

2 Which one of the following statements is true about non- probability sampling?
A There is significant risk that the sample is not representative of the 

population.
B Every member of the population has an equal chance of being selected for 

the sample.
C Using judgment guarantees that population subdivisions of interest are rep-

resented in the sample.
3 The best approach for creating a stratified random sample of a population 

involves:
A drawing an equal number of simple random samples from each 

subpopulation.
B selecting every kth member of the population until the desired sample size 

is reached.
C drawing simple random samples from each subpopulation in sizes propor-

tional to the relative size of each subpopulation.
4 Although he knows security returns are not independent, a colleague makes 

the claim that because of the central limit theorem, if we diversify across a 
large number of investments, the portfolio standard deviation will eventually 
approach zero as n becomes large. Is he correct?

5 Why is the central limit theorem important?
6 What is wrong with the following statement of the central limit theorem?

Central Limit Theorem. “If the random variables X1, X2, X3, …, Xn are a 
random sample of size n from any distribution with finite mean μ and 
variance σ2, then the distribution of X  will be approximately normal, with a 
standard deviation of σ n .”

7 Peter Biggs wants to know how growth managers performed last year. Biggs 
assumes that the population cross- sectional standard deviation of growth man-
ager returns is 6% and that the returns are independent across managers.
A How large a random sample does Biggs need if he wants the standard devia-

tion of the sample means to be 1%?
B How large a random sample does Biggs need if he wants the standard devia-

tion of the sample means to be 0.25%?
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8 Petra Munzi wants to know how value managers performed last year. Munzi 
estimates that the population cross- sectional standard deviation of value 
manager returns is 4% and assumes that the returns are independent across 
managers.
A Munzi wants to build a 95% confidence interval for the population mean 

return. How large a random sample does Munzi need if she wants the 95% 
confidence interval to have a total width of 1%?

B Munzi expects a cost of about $10 to collect each observation. If she has 
a $1,000 budget, will she be able to construct the confidence interval she 
wants?

9 Find the reliability factors based on the t-distribution for the following confi-
dence intervals for the population mean (df = degrees of freedom, n = sample 
size):
A A 99% confidence interval, df = 20
B A 90% confidence interval, df = 20
C A 95% confidence interval, n = 25
D A 95% confidence interval, n = 16

10 Assume that monthly returns are normally distributed with a mean of 1% 
and a sample standard deviation of 4%. The population standard deviation is 
unknown. Construct a 95% confidence interval for the sample mean of monthly 
returns if the sample size is 24.

11 Explain the differences between constructing a confidence interval when sam-
pling from a normal population with a known population variance and sam-
pling from a normal population with an unknown variance.

12 Suppose we take a random sample of 30 companies in an industry with 200 
companies. We calculate the sample mean of the ratio of cash flow to total debt 
for the prior year. We find that this ratio is 23%. Subsequently, we learn that the 
population cash flow to total debt ratio (taking account of all 200 companies) is 
26%. What is the explanation for the discrepancy between the sample mean of 
23% and the population mean of 26%?
A Sampling error.
B Bias.
C A lack of consistency.

13 Alcorn Mutual Funds is placing large advertisements in several financial pub-
lications. The advertisements prominently display the returns of 5 of Alcorn’s 
30 funds for the past 1-, 3-, 5-, and 10- year periods. The results are indeed 
impressive, with all of the funds beating the major market indexes and a few 
beating them by a large margin. Is the Alcorn family of funds superior to its 
competitors?

14 Julius Spence has tested several predictive models in order to identify under-
valued stocks. Spence used about 30 company- specific variables and 10 
market- related variables to predict returns for about 5,000 North American 
and European stocks. He found that a final model using eight variables applied 
to telecommunications and computer stocks yields spectacular results. Spence 
wants you to use the model to select investments. Should you? What steps 
would you take to evaluate the model?

15 A population has a non- normal distribution with mean µ and variance σ2. The 
sampling distribution of the sample mean computed from samples of large size 
from that population will have:
A the same distribution as the population distribution.
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B its mean approximately equal to the population mean.
C its variance approximately equal to the population variance.

16 A sample mean is computed from a population with a variance of 2.45. The 
sample size is 40. The standard error of the sample mean is closest to:
A 0.039.
B 0.247.
C 0.387.

17 An estimator with an expected value equal to the parameter that it is intended 
to estimate is described as:
A efficient.
B unbiased.
C consistent.

18 If an estimator is consistent, an increase in sample size will increase the:
A accuracy of estimates.
B efficiency of the estimator.
C unbiasedness of the estimator.

19 For a two- sided confidence interval, an increase in the degree of confidence will 
result in:
A a wider confidence interval.
B a narrower confidence interval.
C no change in the width of the confidence interval.

20 For a sample size of 17, with a mean of 116.23 and a variance of 245.55, the 
width of a 90% confidence interval using the appropriate t-distribution is closest 
to:
A 13.23.
B 13.27.
C 13.68.

21 For a sample size of 65 with a mean of 31 taken from a normally distributed 
population with a variance of 529, a 99% confidence interval for the population 
mean will have a lower limit closest to:
A 23.64.
B 25.41.
C 30.09.

22 An increase in sample size is most likely to result in a:
A wider confidence interval.
B decrease in the standard error of the sample mean.
C lower likelihood of sampling from more than one population.

23 Otema Chi has a spreadsheet with 108 monthly returns for shares in Marunou 
Corporation. He writes a software program that uses bootstrap resampling to 
create 200 resamples of this Marunou data by sampling with replacement. Each 
resample has 108 data points. Chi’s program calculates the mean of each of 
the 200 resamples, and then it calculates that the mean of these 200 resample 
means is 0.0261. The program subtracts 0.0261 from each of the 200 resample 
means, squares each of these 200 differences, and adds the squared differences 
together. The result is 0.835. The program then calculates an estimate of the 
standard error of the sample mean.
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 The estimated standard error of the sample mean is closest to:
A 0.0115
B 0.0648
C 0.0883

24 Compared with bootstrap resampling, jackknife resampling:
A is done with replacement.
B usually requires that the number of repetitions is equal to the sample size.
C produces dissimilar results for every run because resamples are randomly 

drawn.
25 A report on long- term stock returns focused exclusively on all currently pub-

licly traded firms in an industry is most likely susceptible to:
A look- ahead bias.
B survivorship bias.
C intergenerational data mining.

26 Which sampling bias is most likely investigated with an out- of- sample test?
A Look- ahead bias
B Data- mining bias
C Sample selection bias

27 Which of the following characteristics of an investment study most likely indi-
cates time- period bias?
A The study is based on a short time- series.
B Information not available on the test date is used.
C A structural change occurred prior to the start of the study’s time series.
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SOLUTIONS

1 A is correct. With judgmental sampling, Kinzua will use his knowledge and 
professional judgment as a seasoned auditor to select transactions of interest 
from the population. This approach will allow Kinzua to create a sample that 
is representative of the population and that will provide sufficient audit cov-
erage. Judgmental sampling is useful in cases that have a time constraint or 
in which the specialty of researchers is critical to select a more representative 
sample than by using other probability or non- probability sampling methods. 
Judgement sampling, however, entails the risk that Kinzua is biased in his 
selections, leading to skewed results that are not representative of the whole 
population.

2 A is correct. Because non- probability sampling is dependent on factors other 
than probability considerations, such as a sampler’s judgment or the conve-
nience to access data, there is a significant risk that non- probability sampling 
might generate a non- representative sample

3 C is correct. Stratified random sampling involves dividing a population into 
subpopulations based on one or more classification criteria. Then, simple ran-
dom samples are drawn from each subpopulation in sizes proportional to the 
relative size of each subpopulation. These samples are then pooled to form a 
stratified random sample.

4 No. First the conclusion on the limit of zero is wrong; second, the support cited 
for drawing the conclusion (i.e., the central limit theorem) is not relevant in this 
context.

5 In many instances, the distribution that describes the underlying population is 
not normal or the distribution is not known. The central limit theorem states 
that if the sample size is large, regardless of the shape of the underlying popu-
lation, the distribution of the sample mean is approximately normal. Therefore, 
even in these instances, we can still construct confidence intervals (and conduct 
tests of inference) as long as the sample size is large (generally n ≥ 30).

6 The statement makes the following mistakes:
■● Given the conditions in the statement, the distribution of X  will be approxi-

mately normal only for large sample sizes.
■● The statement omits the important element of the central limit theorem that 

the distribution of X  will have mean μ.

7 A The standard deviation or standard error of the sample mean is � �X n� . 

Substituting in the values for σX  and σ, we have 1% = 6% n , or n  = 6. 
Squaring this value, we get a random sample of n = 36.

B As in Part A, the standard deviation of sample mean is � �X n� . 

Substituting in the values for σX  and σ, we have 0.25% = 6% n , or n  = 
24. Squaring this value, we get a random sample of n = 576, which is 
substantially larger than for Part A of this question.
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8 A Assume the sample size will be large and thus the 95% confidence interval 
for the population mean of manager returns is X sX± 1 96. , 

where s s nX = . Munzi wants the distance between the upper limit and 
lower limit in the confidence interval to be 1%, which is

X s X sX X�� � � �� � �1 96 1 96 1. . %

 Simplifying this equation, we get 2 1 96. sX� �  = 1%. Finally, we have 3 92. sX  = 
1%, which gives us the standard deviation of the sample mean, sX  = 0.255%. 

The distribution of sample means is s s nX = . Substituting in the values 

for sX  and s, we have 0.255% = 4% n , or n  = 15.69. Squaring this value, 
we get a random sample of n = 246.

B With her budget, Munzi can pay for a sample of up to 100 observations, 
which is far short of the 246 observations needed. Munzi can either proceed 
with her current budget and settle for a wider confidence interval or she can 
raise her budget (to around $2,460) to get the sample size for a 1% width in 
her confidence interval.

9 A For a 99% confidence interval, the reliability factor we use is t0.005; for df = 
20, this factor is 2.845.

B For a 90% confidence interval, the reliability factor we use is t0.05; for df = 
20, this factor is 1.725.

C Degrees of freedom equals n − 1, or in this case 25 − 1 = 24. For a 95% con-
fidence interval, the reliability factor we use is t0.025; for df = 24, this factor 
is 2.064.

D Degrees of freedom equals 16 − 1 = 15. For a 95% confidence interval, the 
reliability factor we use is t0.025; for df = 15, this factor is 2.131.

10 Because this is a small sample from a normal population and we have only the 
sample standard deviation, we use the following model to solve for the confi-
dence interval of the population mean:

X t s
n

� � 2

 where we find t0.025 (for a 95% confidence interval) for df = n − 1 = 24 − 1 = 23; 
this value is 2.069. Our solution is 1% ± 2.069(4%)/ 24  = 1% ± 2.069(0.8165) = 
1% ± 1.69. The 95% confidence interval spans the range from −0.69% to +2.69%.

11 If the population variance is known, the confidence interval is

X z
n

� �
�

2

 The confidence interval for the population mean is centered at the sample 
mean, X . The population standard deviation is σ, and the sample size is n. The 
population standard deviation divided by the square root of n is the standard 
error of the estimate of the mean. The value of z depends on the desired degree 
of confidence. For a 95% confidence interval, z0.025 = 1.96 and the confidence 
interval estimate is

X
n

� 1 96. �
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 If the population variance is not known, we make two changes to the technique 
used when the population variance is known. First, we must use the sample 
standard deviation instead of the population standard deviation. Second, we 
use the t-distribution instead of the normal distribution. The critical t-value 
will depend on degrees of freedom n − 1. If the sample size is large, we have the 
alternative of using the z-distribution with the sample standard deviation.

12 A is correct. The discrepancy arises from sampling error. Sampling error exists 
whenever one fails to observe every element of the population, because a 
sample statistic can vary from sample to sample. As stated in the reading, the 
sample mean is an unbiased estimator, a consistent estimator, and an efficient 
estimator of the population mean. Although the sample mean is an unbiased 
estimator of the population mean—the expected value of the sample mean 
equals the population mean—because of sampling error, we do not expect the 
sample mean to exactly equal the population mean in any one sample we may 
take.

13 No, we cannot say that Alcorn Mutual Funds as a group is superior to compet-
itors. Alcorn Mutual Funds’ advertisement may easily mislead readers because 
the advertisement does not show the performance of all its funds. In particular, 
Alcorn Mutual Funds is engaging in sample selection bias by presenting the 
investment results from its best- performing funds only.

14 Spence may be guilty of data mining. He has used so many possible combina-
tions of variables on so many stocks, it is not surprising that he found some 
instances in which a model worked. In fact, it would have been more surprising 
if he had not found any. To decide whether to use his model, you should do two 
things: First, ask that the model be tested on out- of- sample data—that is, data 
that were not used in building the model. The model may not be successful with 
out- of- sample data. Second, examine his model to make sure that the relation-
ships in the model make economic sense, have a story, and have a future.

15 B is correct. Given a population described by any probability distribution (nor-
mal or non- normal) with finite variance, the central limit theorem states that 
the sampling distribution of the sample mean will be approximately normal, 
with the mean approximately equal to the population mean, when the sample 
size is large.

16 B is correct. Taking the square root of the known population variance to deter-
mine the population standard deviation (σ) results in

� � �2 45 1 565. .

 The formula for the standard error of the sample mean (σX), based on a known 
sample size (n), is

�
�

X n
�

 Therefore,

�X � �
1 565

40
0 247. .

17 B is correct. An unbiased estimator is one for which the expected value equals 
the parameter it is intended to estimate.
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18 A is correct. A consistent estimator is one for which the probability of esti-
mates close to the value of the population parameter increases as sample size 
increases. More specifically, a consistent estimator’s sampling distribution 
becomes concentrated on the value of the parameter it is intended to estimate 
as the sample size approaches infinity.

19 A is correct. As the degree of confidence increases (e.g., from 95% to 99%), a 
given confidence interval will become wider. A confidence interval is a range for 
which one can assert with a given probability 1 – α, called the degree of confi-
dence, that it will contain the parameter it is intended to estimate.

20 B is correct. The confidence interval is calculated using the following equation:

X t s
n

� � 2

 Sample standard deviation (s) = 245 55.  = 15.670.
 For a sample size of 17, degrees of freedom equal 16, so t0.05 = 1.746.
 The confidence interval is calculated as

116 23 1 74615 67
17

116 23 6 6357. . . . .� � �

 Therefore, the interval spans 109.5943 to 122.8656, meaning its width is equal 
to approximately 13.271. (This interval can be alternatively calculated as 
6.6357 × 2.)

21 A is correct. To solve, use the structure of Confidence interval = Point estimate 
± Reliability factor × Standard error, which, for a normally distributed popula-
tion with known variance, is represented by the following formula:

X z
n

� �
�

2

 For a 99% confidence interval, use z0.005 = 2.58.

 Also, σ = 529  = 23.

 Therefore, the lower limit = 31 2 58 23
65

23 6398� �. . .

22 B is correct. All else being equal, as the sample size increases, the standard 
error of the sample mean decreases and the width of the confidence interval 
also decreases.

23 B is correct.
 The estimate of the standard error of the sample mean with bootstrap resam-

pling is calculated as follows:

s
BX

b

b

B

b

b

�
�

� �
�

� � �
� �

� �1

1

1

200 1

1

199
0 8352

1

2

1

200

( ( .¸ ¸ ) ¸ 0.0261) 

ss
X
� 0 0648.

24 B is correct. For a sample of size n, jackknife resampling usually requires n rep-
etitions. In contrast, with bootstrap resampling, we are left to determine how 
many repetitions are appropriate.

25 B is correct. A report that uses a current list of stocks does not account for 
firms that failed, merged, or otherwise disappeared from the public equity mar-
ket in previous years. As a consequence, the report is biased. This type of bias is 
known as survivorship bias.
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26 B is correct. An out- of- sample test is used to investigate the presence of data- 
mining bias. Such a test uses a sample that does not overlap the time period of 
the sample on which a variable, strategy, or model was developed.

27 A is correct. A short time series is likely to give period- specific results that may 
not reflect a longer time period.
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LEARNING OUTCOMES
Mastery The candidate should be able to:

a. define a hypothesis, describe the steps of hypothesis testing, 
and describe and interpret the choice of the null and alternative 
hypotheses;

b. compare and contrast one- tailed and two- tailed tests of 
hypotheses;

c. explain a test statistic, Type I and Type II errors, a significance 
level, how significance levels are used in hypothesis testing, and 
the power of a test;

d. explain a decision rule and the relation between confidence 
intervals and hypothesis tests, and determine whether a 
statistically significant result is also economically meaningful.

e. explain and interpret the p-value as it relates to hypothesis 
testing;

f. describe how to interpret the significance of a test in the context 
of multiple tests;

g. identify the appropriate test statistic and interpret the results 
for a hypothesis test concerning the population mean of both 
large and small samples when the population is normally or 
approximately normally distributed and the variance is (1) known 
or (2) unknown;

h. identify the appropriate test statistic and interpret the results for 
a hypothesis test concerning the equality of the population means 
of two at least approximately normally distributed populations 
based on independent random samples with equal assumed 
variances;

i. identify the appropriate test statistic and interpret the results for 
a hypothesis test concerning the mean difference of two normally 
distributed populations;

(continued)

R E A D I N G
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LEARNING OUTCOMES
Mastery The candidate should be able to:

j. identify the appropriate test statistic and interpret the results 
for a hypothesis test concerning (1) the variance of a normally 
distributed population and (2) the equality of the variances of 
two normally distributed populations based on two independent 
random samples;

k. compare and contrast parametric and nonparametric tests, and 
describe situations where each is the more appropriate type of 
test;

l. explain parametric and nonparametric tests of the hypothesis that 
the population correlation coefficient equals zero, and determine 
whether the hypothesis is rejected at a given level of significance;

m. explain tests of independence based on contingency table data.

INTRODUCTION

a define a hypothesis, describe the steps of hypothesis testing, and describe and 
interpret the choice of the null and alternative hypotheses

1.1 Why Hypothesis Testing?
Faced with an overwhelming amount of data, analysts must deal with the task of 
wrangling those data into something that provides a clearer picture of what is going 
on. Consider an analyst evaluating the returns on two investments over 33 years, as 
we show in Exhibit 1.

Exhibit 1   Returns for Investments One and Two over 33 Years

Annual Return (%)

1212
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88

66

22

00

44

–2–2

11 33335533 77 99 1111 1313 1515 1919 2121 2323 2525 2929 31311717 2727

Year

Investment One Investment Two

1
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Although “a picture is worth a thousand words,” what can we actually glean from 
this plot? Can we tell if each investment’s returns are different from an average of 5%? 
Can we tell whether the returns are different for Investment One and Investment Two? 
Can we tell whether the standard deviations of the two investments are each different 
from 2%? Can we tell whether the variability is different for the two investments? For 
these questions, we need to have more precise tools than simply a plot over time. What 
we need is a set of tools that aid us in making decisions based on the data.

We use the concepts and tools of hypothesis testing to address these questions. 
Hypothesis testing is part of statistical inference, the process of making judgments 
about a larger group (a population) based on a smaller group of observations (that 
is, a sample).

1.2 Implications from a Sampling Distribution
Consider a set of 1,000 asset returns with a mean of 6% and a standard deviation of 
2%. If we draw a sample of returns from this population, what is the chance that the 
mean of this sample will be 6%? What we know about sampling distributions is that 
how close any given sample mean will be to the population mean depends on the 
sample size, the variability within the population, and the quality of our sampling 
methodology.

For example, suppose we draw a sample of 30 observations and the sample mean 
is 6.13%. Is this close enough to 6% to alleviate doubt that the sample is drawn from 
a population with a mean of 6%? Suppose we draw another sample of 30 and find 
a sample mean of 4.8%. Does this bring into doubt whether the population mean is 
6%? If we keep drawing samples of 30 observations from this population, we will get 
a range of possible sample means, as we show in Exhibit 2 for 100 different samples 
of size 30 from this population, with a range of values from 5.06 to 7.03%. All these 
sample means are a result of sampling from the 1,000 asset returns.

Exhibit 2   Distribution of Sample Means of 100 Samples Drawn from a 
Population of 1,000 Returns

Number of Means

2020

1818

1616

1414
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to
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to
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to
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to
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to
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5.95
to
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to
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5.78
to

5.95

6.13
to

6.31
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to

6.31

6.31
to
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to

6.49

6.67
to
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to
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6.49
to
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6.49
to

6.67

6.85
to
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to
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Range of Means

Mean of
6.020
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As you can see in Exhibit 2, a sample mean that is quite different from the popu-
lation mean can occur; this situation is not as likely as drawing a sample with a mean 
closer to the population mean, but it can still happen. In hypothesis testing, we test to 
see whether a sample statistic is likely to come from a population with the hypothesized 
value of the population parameter.

The concepts and tools of hypothesis testing provide an objective means to gauge 
whether the available evidence supports the hypothesis. After applying a statistical 
test of a hypothesis, we should have a clearer idea of the probability that a hypothesis 
is true or not, although our conclusion always stops short of certainty.

The main focus of this reading is on the framework of hypothesis testing and 
tests concerning mean, variance, and correlation, three quantities frequently used 
in investments.

THE PROCESS OF HYPOTHESIS TESTING

Hypothesis testing is part of the branch of statistics known as statistical inference. In 
statistical inference, there is estimation and hypothesis testing. Estimation involves 
point estimates and interval estimates. Consider a sample mean, which is a point 
estimate, that we can use to form a confidence interval. In hypothesis testing, the 
focus is examining how a sample statistic informs us about a population parameter. 
A hypothesis is a statement about one or more populations that we test using sample 
statistics.

The process of hypothesis testing begins with the formulation of a theory to orga-
nize and explain observations. We judge the correctness of the theory by its ability to 
make accurate predictions—for example, to predict the results of new observations. If 
the predictions are correct, we continue to maintain the theory as a possibly correct 
explanation of our observations. Risk plays a role in the outcomes of observations 
in finance, so we can only try to make unbiased, probability- based judgments about 
whether the new data support the predictions. Statistical hypothesis testing fills that 
key role of testing hypotheses when there is uncertainty. When an analyst correctly 
formulates the question into a testable hypothesis and carries out a test of hypotheses, 
the use of well- established scientific methods supports the conclusions and decisions 
made on the basis of this test.

We organize this introduction to hypothesis testing around the six steps in Exhibit 3, 
which illustrate the standard approach to hypothesis testing.

2
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Exhibit 3   The Process of Hypothesis Testing

Step 1: State the hypotheses

Step 2: Identify the appropriate test statistic

Step 3: Specify the level of significance

Step 4: State the decision rule

Step 5: Collect data and calculate the test statistic

Step 6: Make a decision

2.1 Stating the Hypotheses
For each hypothesis test, we always state two hypotheses: the null hypothesis (or 
null), designated H0, and the alternative hypothesis, designated Ha. For example, 
our null hypothesis may concern the value of a population mean, µ, in relation to one 
possible value of the mean, µ0. As another example, our null hypothesis may concern 
the population variance, σ2, compared with a possible value of this variance, σ0

2. 
The null hypothesis is a statement concerning a population parameter or parameters 
considered to be true unless the sample we use to conduct the hypothesis test gives 
convincing evidence that the null hypothesis is false. In fact, the null hypothesis is what 
we want to reject. If there is sufficient evidence to indicate that the null hypothesis is 
not true, we reject it in favor of the alternative hypothesis.

Importantly, the null and alternative hypotheses are stated in terms of population 
parameters, and we use sample statistics to test these hypotheses.

2.2 Two- Sided vs. One- Sided Hypotheses

b compare and contrast one- tailed and two- tailed tests of hypotheses

Suppose we want to test whether the population mean return is equal to 6%. We 
would state the hypotheses as

H0: µ = 6

and the alternative as
Ha: µ ≠ 6.

What we just created was a two- sided hypothesis test. We are testing whether the 
mean is equal to 6%; it could be greater than or less than that because we are simply 
asking whether the mean is different from 6%. If we find that the sample mean is far 
enough away from the hypothesized value, considering the risk of drawing a sample 
that is not representative of the population, then we would reject the null in favor of 
the alternative hypothesis.
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What if we wanted to test whether the mean is greater than 6%. This presents us 
with a one- sided hypothesis test, and we specify the hypotheses as follows:

H0: µ ≤ 6.
Ha: µ > 6.

If we find that the sample mean is greater than the hypothesized value of 6 by a sufficient 
margin, then we would reject the null hypothesis. Why is the null hypothesis stated 
with a “≤” sign? First, if the sample mean is less than or equal to 6%, this would not 
support the alternative. Second, the null and alternative hypotheses must be mutually 
exclusive and collectively exhaustive; in other words, all possible values are contained 
in either the null or the alternative hypothesis.

Despite the different ways to formulate hypotheses, we always conduct a test of 
the null hypothesis at the point of equality; for example, µ = µ0. Whether the null is 
H0: µ = µ0, H0: µ ≤ µ0, or H0: µ ≥ µ0, we actually test µ = µ0. The reasoning is straight-
forward: Suppose the hypothesized value of the mean is 6. Consider H0: µ ≤ 6, with a 
“greater than” alternative hypothesis, Ha: µ > 6. If we have enough evidence to reject 
H0: µ = 6 in favor of Ha: µ > 6, we definitely also have enough evidence to reject the 
hypothesis that the parameter µ is some smaller value, such as 4.5 or 5.

Using hypotheses regarding the population mean as an example, the three possible 
formulations of hypotheses are as follows:

Two- sided alternative: H0: μ = μ0 versus Ha: μ ≠ μ0
One- sided alternative (right side): H0: µ ≤ µ0 versus Ha: µ > µ0
One- sided alternative (left side): H0: µ ≥ µ0 versus Ha: µ < µ0

The reference to the side (right or left) refers to where we reject the null in the prob-
ability distribution. For example, if the alternative is Ha: μ > 6, this means that we 
will reject the null hypothesis if the sample mean is sufficiently higher than (or on the 
right side of the distribution of ) the hypothesized value.

Importantly, the calculation to test the null hypothesis is the same for all three 
formulations. What is different for the three formulations is how the calculation is 
evaluated to decide whether to reject the null.

2.3 Selecting the Appropriate Hypotheses
How do we choose the null and alternative hypotheses? The null is what we are hoping 
to reject. The most common alternative is the “not equal to” hypothesis. However, 
economic or financial theory may suggest a one- sided alternative hypothesis. For 
example, if the population parameter is the mean risk premium, financial theory 
may argue that this risk premium is positive. Following the principle of stating the 
alternative as the “hoped for” condition and using µrp for the population mean risk 
premium, we formulate the following hypotheses:

H0: µrp ≤ 0 versus Ha: µrp > 0

Note that the sign in the alternative hypotheses reflects the belief of the researcher 
more strongly than a two- sided alternative hypothesis. However, the researcher may 
sometimes select a two- sided alternative hypothesis to emphasize an attitude of 
neutrality when a one- sided alternative hypothesis is also reasonable. Typically, the 
easiest way to formulate the hypotheses is to specify the alternative hypothesis first 
and then specify the null.

© CFA Institute. For candidate use only. Not for distribution.



Identify the Appropriate Test Statistic 363

EXAMPLE 1  

Specifying the Hypotheses
An analyst suspects that in the most recent year excess returns on stocks have 
fallen below 5%. She wants to study whether the excess returns are less than 5%. 
Designating the population mean as μ, which hypotheses are most appropriate 
for her analysis?

A H0: µ = 5 versus Ha: µ ≠ 5
B H0: µ > 5 versus Ha: µ < 5
C H0: µ < 5 versus Ha: µ > 5

Solution
B is correct. The null hypothesis is what she wants to reject in favor of the 
alternative, which is that population mean excess return is less than 5%. This is 
a one- sided (left- side) alternative hypothesis.

IDENTIFY THE APPROPRIATE TEST STATISTIC

c explain a test statistic, Type I and Type II errors, a significance level, how signif-
icance levels are used in hypothesis testing, and the power of a test

A test statistic is a value calculated on the basis of a sample that, when used in conjunc-
tion with a decision rule, is the basis for deciding whether to reject the null hypothesis.

3.1 Test Statistics
The focal point of our statistical decision is the value of the test statistic. The test 
statistic that we use depends on what we are testing. As an example, let us examine 
the test of a population mean risk premium. Consider the sample mean, X , calculated 
from a sample of returns drawn from the population. If the population standard 
deviation is known, the standard error of the distribution of sample means, σX , is the 
ratio of the population standard deviation to the square root of the sample size:

�
�

X n
� .

The test statistic for the test of the mean when the population variance is known 
is a z-distributed (that is, normally distributed) test statistic:

z
X

n

rp�
� �

�
0 .

If the hypothesized value of the mean population risk premium is 6 (that is, μ0 = 6), 

we calculate this as z
X

n

rp�
� 6

�
. If, however, the hypothesized value of the mean risk 

premium is zero (that is, μ0 = 0), we can simplify this test statistic as

z
X

n

rp�
�

.

3

(1)

(2)
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Notably, the key to hypothesis testing is identifying the appropriate test statistic for 
the hypotheses and the underlying distribution of the population.

3.2 Identifying the Distribution of the Test Statistic
Following the identification of the appropriate test statistic, we must be concerned 
with the distribution of the test statistic. We show examples of the test statistics and 
their corresponding distributions in Exhibit 4.

Exhibit 4   Test Statistics and Their Distributions

What We Want to Test Test Statistic

Probability 
Distribution of the 
Statistic Degrees of Freedom

Test of a single mean
t

X
s

n

�
� �0

 

t-Distributed n − 1

Test of the difference in means
t X X

s
n

s
n

p p

�
� � �

�

( ) ( )1 2 1 2
2

1

2

2

� �

 

t-Distributed n1 + n2 − 2

Test of the mean of differences
t

d
s

d

d
�

� � 0
t-Distributed n − 1

Test of a single variance
�

�
2

2

0
2

1
�

�s n( )

 

Chi- square distributed n − 1

Test of the difference in variances
F s

s
= 1

2

2
2

 

F-distributed n1 − 1, n2 − 1

Test of a correlation
t r n

r
�

�

�

2

1 2
 

t-Distributed n − 2

Test of independence (categorical 
data) �2

2

1
�

�

�
�

( )O E
E

ij ij

iji

m

 

Chi- square distributed (r − 1)(c − 1)

Note: µ0, µd0, and σ0
2  denote hypothesized values of the mean, mean difference, and variance, respectively. The x , d , s2, s, and r denote 

for a sample the mean, mean of the differences, variance, standard deviation, and correlation, respectively, with subscripts indicating the 
sample, if appropriate. The sample size is indicated as n, and the subscript indicates the sample, if appropriate. Oij and Eij are observed and 
expected frequencies, respectively, with r indicating the number of rows and c indicating the number of columns in the contingency table.

SPECIFY THE LEVEL OF SIGNIFICANCE

The level of significance reflects how much sample evidence we require to reject the 
null hypothesis. The required standard of proof can change according to the nature of 
the hypotheses and the seriousness of the consequences of making a mistake. There 

4
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are four possible outcomes when we test a null hypothesis, as shown in Exhibit 5. A 
Type I error is a false positive (reject when the null is true), whereas a Type II error 
is a false negative (fail to reject when the null is false).

Exhibit 5   Correct and Incorrect Decisions in Hypothesis Testing

True Situation

Decision H0 True H0 False

Fail to reject H0

Correct decision: Type II error:
Do not reject a true null 

hypothesis.
Fail to reject a false null 

hypothesis.

False negative

Reject H0

Type I error: Correct decision:
Reject a true null hypothesis. Reject a false null hypothesis.

False positive

When we make a decision in a hypothesis test, we run the risk of making either 
a Type I or a Type II error. As you can see in Exhibit 5, these errors are mutually 
exclusive: If we mistakenly reject the true null, we can only be making a Type I error; 
if we mistakenly fail to reject the false null, we can only be making a Type II error.

Consider a test of a hypothesis of whether the mean return of a population is 
equal to 6%. How far away from 6% could a sample mean be before we believe it to 
be different from 6%, the hypothesized population mean? We are going to tolerate 
sample means that are close to 6%, but we begin doubting that the population mean is 
equal to 6% when we calculate a sample mean that is much different from 0.06. How 
do we determine “much different”? We do this by setting a risk tolerance for a Type I 
error and determining the critical value or values at which we believe that the sample 
mean is much different from the population mean. These critical values depend on 
(1) the alternative hypothesis, whether one sided or two sided, and (2) the probability 
distribution of the test statistic, which, in turn, depends on the sample size and the 
level of risk tolerance in making a Type I error.

The probability of a Type I error in testing a hypothesis is denoted by the lower-
case Greek letter alpha, α. This probability is also known as the level of significance 
of the test, and its complement, (1 − α), is the confidence level. For example, a level 
of significance of 5% for a test means that there is a 5% probability of rejecting a true 
null hypothesis and corresponds to the 95% confidence level.

Controlling the probabilities of the two types of errors involves a trade- off. All 
else equal, if we decrease the probability of a Type I error by specifying a smaller 
significance level (say, 1% rather than 5%), we increase the probability of making a 
Type II error because we will reject the null less frequently, including when it is false. 
Both Type I and Type II errors are risks of being wrong. Whether to accept more of 
one type versus the other depends on the consequences of the errors, such as costs. 
The only way to reduce the probabilities of both types of errors simultaneously is to 
increase the sample size, n.

Quantifying the trade- off between the two types of errors in practice is challenging 
because the probability of a Type II error is itself difficult to quantify because there 
may be many different possible false hypotheses. Because of this, we specify only α, 
the probability of a Type I error, when we conduct a hypothesis test.
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Whereas the significance level of a test is the probability of incorrectly rejecting the 
true null, the power of a test is the probability of correctly rejecting the null—that is, 
the probability of rejecting the null when it is false. The power of a test is, in fact, the 
complement of the Type II error. The probability of a Type II error is often denoted 
by the lowercase Greek letter beta, β. We can classify the different probabilities in 
Exhibit 6 to reflect the notation that is often used.

Exhibit 6   Probabilities Associated with Hypothesis Testing Decisions

True Situation

Decision H0 True H0 False

Fail to reject H0
Confidence level β

(1 − α)

Reject H0
Level of significance Power of the test

α (1 − β)

The standard approach to hypothesis testing involves choosing the test statistic 
with the most power and then specifying a level of significance. It is more appropriate 
to specify this significance level prior to calculating the test statistic because if we 
specify it after calculating the test statistic, we may be influenced by the result of the 
calculation. The researcher is free to specify the probability of a Type I error, but the 
most common are 10%, 5%, and 1%.

EXAMPLE 2  

Significance Level
If a researcher selects a 5% level of significance for a hypothesis test, the con-
fidence level is:

A 2.5%.
B 5%.
C 95%.

Solution
C is correct. The 5% level of significance (i.e., probability of a Type I error) cor-
responds to 1 − 0.05 = 0.95, or a 95% confidence level (i.e., probability of not 
rejecting a true null hypothesis). The level of significance is the complement to 
the confidence level; in other words, they sum to 1.00, or 100%.

STATE THE DECISION RULE

d explain a decision rule and the relation between confidence intervals and 
hypothesis tests, and determine whether a statistically significant result is also 
economically meaningful

5
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The fourth step in hypothesis testing is stating the decision rule. Before any sample 
is drawn and before a test statistic is calculated, we need to set up a decision rule: 
When do we reject the null hypothesis, and when do we not? The action we take 
is based on comparing the calculated test statistic with a specified value or values, 
which we refer to as critical values. The critical value or values we choose are based 
on the level of significance and the probability distribution associated with the test 
statistic. If we find that the calculated value of the test statistic is more extreme than 
the critical value or values, then we reject the null hypothesis; we say the result is 
statistically significant. Otherwise, we fail to reject the null hypothesis; there is not 
sufficient evidence to reject the null hypothesis.

5.1 Determining Critical Values
For a two- tailed test, we indicate two critical values, splitting the level of significance, 
α, equally between the left and right tails of the distribution. Using a z-distributed 
(standard normal) test statistic, for example, we would designate these critical values 
as ±zα/2. For a one- tailed test, we indicate a single rejection point using the symbol 
for the test statistic with a subscript indicating the specified probability of a Type I 
error— for example, zα.

As we noted in our discussion of Exhibit 2, it is possible to draw a sample that 
has a mean different from the true population mean. In fact, it is likely that a given 
sample mean is different from the population mean because of sampling error. The 
issue becomes whether a given sample mean is far enough away from what is hypoth-
esized to be the population mean that there is doubt about whether the hypothesized 
population mean is true. Therefore, we need to decide how far is too far for a sample 
mean in comparison to a population mean. That is where the critical values come 
into the picture.

Suppose we are using a z-test and have chosen a 5% level of significance. In 
Exhibit 7, we illustrate two tests at the 5% significance level using a z-statistic: A two- 
sided alternative hypothesis test in Panel A and a one- sided alternative hypothesis test 
in Panel B, with the white area under the curve indicating the confidence level and 
the shaded areas indicating the significance level. In Panel A, if the null hypothesis 
that μ = μ0 is true, the test statistic has a 2.5% chance of falling in the left rejection 
region and a 2.5% chance of falling in the right rejection region. Any calculated value 
of the test statistic that falls in either of these two regions causes us to reject the null 
hypothesis at the 5% significance level.

We determine the cut- off values for the reject and fail- to- reject regions on the basis 
of the distribution of the test statistic. For a test statistic that is normally distributed, 
we determine these cut- off points on the basis of the area under the normal curve; 
with a Type I error (i.e., level of significance, α) of 5% and a two- sided test, there is 
2.5% of the area on either side of the distribution. This results in rejection points of 
−1.960 and +1.960, dividing the distribution between the rejection and fail- to- reject 
regions. Similarly, if we have a one- sided test involving a normal distribution, we 
would have 5% area under the curve with a demarcation of 1.645 for a right- side test, 
as we show in Exhibit 7 (or −1.645 for a left- side test).
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Exhibit 7   Decision Criteria Using a 5% Level of Significance

A. Ho: µ = µo versus Ha: µ ≠ µo

–1.960
Reject the null hypothesis

–1.960
Reject the null hypothesis

+1.960
Reject the null hypothesis
+1.960
Reject the null hypothesis

Fail to reject the 
null hypothesis

B. Ho: µ ≤ µo versus Ha: µ > µo

+1.645
Reject the null hypothesis
+1.645
Reject the null hypothesis

Fail to reject the 
null hypothesis

Determining the cut- off points using programming

The programs in Microsoft Excel, Python, and R differ slightly, depending on whether 
the user specifies the area to the right or the left of the cut- off in the code:

Cut- off for . . . Excel Python R

Right tail, 2.5% NORM.S.INV(0.975) norm.ppf(.975) qnorm(.025,lower.tail=FALSE)
Left tail, 2.5% NORM.S.INV(0.025) norm.ppf(.025) qnorm(.025,lower.tail=TRUE)
Right tail, 5% NORM.S.INV(0.95) norm.ppf(.95) qnorm(.05,lower.tail=FALSE)
Left tail, 5% NORM.S.INV(0.05) norm.ppf(.05) qnorm(.05,lower.tail=TRUE)

For Python, install scipy.stats and import: from scipy.stats import norm.

5.2 Decision Rules and Confidence Intervals
Exhibit 7 provides an opportunity to highlight the relationship between confidence 
intervals and hypothesis tests. A 95% confidence interval for the population mean, µ, 
based on sample mean, X , is given by:

X
n

X
n

� �
�
�
�

�
�
�

1 96 1 96. , . ,� �

or, more compactly, X
n

� 1 96. � .

(3)
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Now consider the conditions for rejecting the null hypothesis:

X

n

X

n

z
X

n

�
� �

�
� �

��
�

�
�

�
�

0 0 01 96 1 96. . . or , where 

As you can see by comparing these conditions with the confidence interval, we can 
address the question of whether X  is far enough away from μ0 by either comparing 
the calculated test statistic with the critical values or comparing the hypothesized 
population parameter (μ = μ0) with the bounds of the confidence interval, as we show 
in Exhibit 8. Thus, a significance level in a two- sided hypothesis test can be interpreted 
in the same way as a (1 − α) confidence interval.

Exhibit 8   Making a Decision Based on Critical Values and Confidence 
Intervals for a Two- Sided Alternative Hypothesis

Method Procedure Decision

1 Compare the calculated 
test statistic with the criti-
cal values.

If the calculated test statistic is less than the 
lower critical value or greater than the upper 
critical value, reject the null hypothesis.

2 Compare the calculated 
test statistic with the 
bounds of the confidence 
interval.

If the hypothesized value of the population 
parameter under the null is outside the corre-
sponding confidence interval, the null hypoth-
esis is rejected.

5.3 Collect the Data and Calculate the Test Statistic
The fifth step in hypothesis testing is collecting the data and calculating the test sta-
tistic. The quality of our conclusions depends on not only the appropriateness of the 
statistical model but also the quality of the data we use in conducting the test. First, 
we need to ensure that the sampling procedure does not include biases, such as sample 
selection or time bias. Second, we need to cleanse the data, checking inaccuracies and 
other measurement errors in the data. Once assured that the sample is unbiased and 
accurate, the sample information is used to calculate the appropriate test statistic.

EXAMPLE 3  

Using a Confidence Interval in Hypothesis Testing
Consider the hypotheses H0: µ = 3 versus Ha: µ ≠ 3. If the confidence interval 
based on sample information has a lower bound of 2.75 and an upper bound of 
4.25, the most appropriate decision is:

A reject the null hypothesis.
B accept the null hypothesis.
C fail to reject the null hypothesis.

Solution
C is correct. Since the hypothesized population mean (µ = 3) is within the 
bounds of the confidence interval (2.75, 4.25), the correct decision is to fail 
to reject the null hypothesis. It is only when the hypothesized value is outside 
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these bounds that the null hypothesis is rejected. Note that the null hypothesis 
is never accepted; either the null is rejected on the basis of the evidence or there 
is a failure to reject the null hypothesis.

MAKE A DECISION

d explain a decision rule and the relation between confidence intervals and 
hypothesis tests, and determine whether a statistically significant result is also 
economically meaningful

6.1 Make a Statistical Decision
The sixth step in hypothesis testing is making the decision. Consider a test of the mean 
risk premium, comparing the population mean with zero. If the calculated z-statistic 
is 2.5 and with a two- sided alternative hypothesis and a 5% level of significance, we 
reject the null hypothesis because 2.5 is outside the bounds of ±1.96. This is a statisti-
cal decision: The evidence indicates that the mean risk premium is not equal to zero.

6.2 Make an Economic Decision
Another part of the decision making is making the economic or investment decision. 
The economic or investment decision takes into consideration not only the statistical 
decision but also all pertinent economic issues. If, for example, we reject the null that 
the risk premium is zero in favor of the alternative hypothesis that the risk premium 
is greater than zero, we have found evidence that the US risk premium is different 
from zero. The question then becomes whether this risk premium is economically 
meaningful. On the basis of these considerations, an investor might decide to commit 
funds to US equities. A range of non- statistical considerations, such as the investor’s 
tolerance for risk and financial position, might also enter the decision- making process.

6.3 Statistically Significant but Not Economically Significant?
We frequently find that slight differences between a variable and its hypothesized value 
are statistically significant but not economically meaningful. For example, we may be 
testing an investment strategy and reject a null hypothesis that the mean return to the 
strategy is zero based on a large sample. In the case of a test of the mean, the smaller 
the standard error of the mean, the larger the value of the test statistic and the greater 
the chance the null will be rejected, all else equal. The standard error decreases as 
the sample size, n, increases, so that for very large samples, we can reject the null for 
small departures from it. We may find that although a strategy provides a statistically 
significant positive mean return, the results may not be economically significant when 
we account for transaction costs, taxes, and risk. Even if we conclude that a strategy’s 
results are economically meaningful, we should explore the logic of why the strategy 
might work in the future before implementing it. Such considerations cannot be 
incorporated into a hypothesis test.

6
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EXAMPLE 4  

Decisions and Significance
An analyst is testing whether there are positive risk- adjusted returns to a trading 
strategy. He collects a sample and tests the hypotheses of H0: µ ≤ 0% versus Ha: 
µ > 0%, where µ is the population mean risk- adjusted return. The mean risk- 
adjusted return for the sample is 0.7%. The calculated t-statistic is 2.428, and 
the critical t-value is 2.345. He estimates that the transaction costs are 0.3%. 
The results are most likely:

A statistically and economically significant.
B statistically significant but not economically significant.
C economically significant but not statistically significant.

Solution
A is correct. The results indicate that the mean risk- adjusted return is greater 
than 0% because the calculated test statistic of 2.428 is greater than the critical 
value of 2.245. The results are also economically significant because the risk- 
adjusted return exceeds the transaction cost associated with this strategy by 
0.4% (= 0.7 − 0.3).

THE ROLE OF P-VALUES

e explain and interpret the p-value as it relates to hypothesis testing

Analysts, researchers, and statistical software often report the p-value associated with 
hypothesis tests. The p-value is the area in the probability distribution outside the 
calculated test statistic; for a two- sided test, this is the area outside ± the calculated 
test statistic, but for a one- sided test, this is the area outside the calculated test statistic 
on the appropriate side of the probability distribution. We illustrated in Exhibit 7 the 
rejection region, which corresponds to the probability of a Type I error. However, the 
p-value is the area under the curve (so, the probability) associated with the calculated 
test statistic. Stated another way, the p-value is the smallest level of significance at 
which the null hypothesis can be rejected.

Consider the calculated z-statistic of 2.33 in a two- sided test: The p-value is the area 
in the z-distribution that lies outside ±2.33. Calculation of this area requires a bit of 
calculus, but fortunately statistical programs and other software calculate the p-value 
for us. For the value of the test statistic of 2.33, the p-value is approximately 0.02, or 2%. 
Using Excel, we can get the precise value of 0.019806 [(1- NORM.S.DIST(2.33,TRUE))*2]. 
We can reject the null hypothesis because we were willing to tolerate up to 5% outside 
the calculated value. The smaller the p-value, the stronger the evidence against the 
null hypothesis and in favor of the alternative hypothesis; if the p-value is less than 
the level of significance, we reject the null hypothesis.

We illustrate the comparison of the level of significance and the p-value in Exhibit 9. 
The fail- to- reject region is determined by the critical values of +1.96, as we saw in 
Exhibit 7. There is 5% of the area under the distribution in the rejection regions—2.5% 
on the left side, 2.5% on the right. But now we introduce the area outside the calculated 
test statistic. For the calculated z-statistic of 2.33, there is 0.01, or 1%, of the area under 
the normal distribution above 2.33 and 1% of the area below −2.33 (or, in other words, 

7
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98% of the area between ±2.33). Since we are willing to tolerate a 5% Type I error, we 
reject the null hypothesis in the case of a calculated test statistic of 2.33 because there 
is a p-value of 2%; there is 2% of the distribution outside the calculated test statistic.

Exhibit 9   Comparison of the Level of Significance and the p-Value

–2.33–2.33 2.332.33

RejectReject RejectReject
–1.96–1.96 1.961.96

Fail to reject the 
null hypothesis

a/2

p/2 p/2

a/2

What if we are testing a one- sided alternative hypothesis? We focus solely on the 
area outside the calculated value on the side indicated by the alternative hypothesis. 
For example, if we are testing an alternative hypothesis that the population mean risk 
premium is greater than zero, calculate a z-statistic of 2.5, and have a level of signifi-
cance of 5%, the p-value is the area in the probability distribution that is greater than 
2.5. This area is 0.00621, or 0.621%. Since this is less than what we tolerate if the α is 
5%, we reject the null hypothesis.

Consider a population of 1,000 assets that has a mean return of 6% and a standard 
deviation of 2%. Suppose we draw a sample of 50 returns and test whether the mean 
is equal to 6%, calculating the p-value for the calculated z-statistic. Then, suppose we 
repeat this process, draw 1,000 different samples, and, therefore, get 1,000 different 
calculated z-statistics and 1,000 different p-values. If we use a 5% level of significance, 
we should expect to reject the true null 5% of the time; if we use a 10% level of sig-
nificance, we should expect to reject the true null 10% of the time.

Now suppose that with this same population, whose mean return is 6%, we test 
the hypothesis that the population mean is 7%, with the same standard deviation. As 
before, we draw 1,000 different samples and calculate 1,000 different p-values. If we 
use a 5% level of significance and a two- sided alternative hypothesis, we should expect 
to reject this false null hypothesis on the basis of the power of the test.

Putting this together, consider the histograms of p-values for the two different tests 
in Exhibit 10. The first bin is the p-values of 5% or less. What we see is that with the 
true null hypothesis of 6%, we reject the null approximately 5% of the time. For the 
false null hypothesis, that the mean is equal to 7%, we reject the null approximately 
0.973, or 97.3%, of the time.
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Exhibit 10   Distribution of p-values for 1,000 Different Samples of Size 50 
Drawn from a Population with a Mean of 6%

Frequency

1,0001,000

800800

900900

700700

600600

500500

400400

200200

300300

100100

00

303055 5555 8585 100100959590908080757570706565606050504545404035352525202015151010

p-Values (upper value of bins, %)

False Null Mean = 0.07 True Null Mean = 0.06

The p-values for the true null hypothesis are generally uniformly distributed 
between 0% and 100% because under the null hypothesis, there is a 5% chance of the 
p-values being less than 5%, a 10% chance being less than 10%, and so on. Why is it 
not completely uniform? Because we took 1,000 samples of 50; taking more samples 
or larger samples would result in a more uniform distribution of p-values. When 
looking at the p-values for the false null hypothesis in Exhibit 10, we see that this is 
not a uniform distribution; rather, there is a peak around 0% and very little elsewhere. 
You can see the difference in the p-values for two false hypothesized means of 6.5% 
and 7% in Exhibit 11. It shows that the further the false hypothesis is away from the 
truth (i.e., mean of 6%), the greater the power of the test and the better the ability to 
detect the false hypothesis.

Software, such as Excel, Python, and R, is available for calculating p-values for 
most distributions.

Exhibit 11   Comparison of the Distribution of p-Values for the False Null 
Hypotheses H0: µ = 7% and H0: µ = 6.5%

Frequency

1,0001,000

800800

900900

700700

600600

500500

400400

200200

300300

100100

00

303055 5555 8585 100100959590908080757570706565606050504545404035352525202015151010

p-Values (upper value of bins, %)

False Null Mean = 0.07 False Null Mean = 0.065
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EXAMPLE 5  

Making a Decision Using p-Values
An analyst is testing the hypotheses H0: σ2 = 0.01 versus Ha: σ2 ≠ 0.01. Using 
software, she determines that the p-value for the test statistic is 0.03, or 3%. 
Which of the following statements are correct?

A Reject the null hypothesis at both the 1% and 5% levels of significance.
B Reject the null hypothesis at the 5% level but not at the 1% level of 

significance.
C Fail to reject the null hypothesis at both the 1% and 5% levels of 

significance.

Solution
B is correct. Rejection of the null hypothesis requires that the p-value be less than 
the level of significance. On the basis of this requirement, the null is rejected at 
the 5% level of significance but not at the 1% level of significance.

MULTIPLE TESTS AND INTERPRETING SIGNIFICANCE

f describe how to interpret the significance of a test in the context of multiple 
tests

A Type I error is the risk of rejection of a true null hypothesis. Another way of phras-
ing this is that it is a false positive result; that is, the null is rejected (the positive), 
yet the null is true (hence, a false positive). The expected portion of false positives is 
the false discovery rate (FDR). In the previous example of drawing 1,000 samples 
of 50 observations each, it is the case that there are samples in which we reject the 
true null hypothesis of a population mean of 6%. If we draw enough samples with a 
level of significance of 0.05, approximately 0.05 of the time you will reject the null 
hypothesis, even if the null is true. In other words, if you run 100 tests and use a 5% 
level of significance, you get five false positives, on average. This is referred to as the 
multiple testing problem.

The false discovery approach to testing requires adjusting the p-value when you 
have a series of tests. The idea of adjusting for the likelihood of significant results 
being false positives was first introduced by Benjamini and Hochberg (BH) in 1995. 
What they proposed is that the researcher rank the p-values from the various tests, 
from lowest to highest, and then make the following comparison, starting with the 
lowest p-value (with k = 1), p(1):

p i( ) .1 � �
Rank of 

Number of tests
This comparison is repeated, such that k is determined by the highest ranked p(k) 

for which this is a true statement. If, say, k is 4, then the first four tests (ranked on the 
basis of the lowest p-values) are said to be significant.

Suppose we test the hypothesis that the population mean is equal to 6% and repeat 
the sampling process by drawing 20 samples and calculating 20 test statistics; the 
six test statistics with the lowest p-values are shown in   . Using a significance level of 
5%, if we simply relied on each test and its p-value, then there are five tests in which 
we would reject the null. However, using the BH criteria, only one test is considered 
significant, as shown in Exhibit 12.

8
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Exhibit 12   Applying the Benjamini and Hochberg Criteria

(1) (2) (3) (4) (5) (6)

X
Calculated 
z-Statistic p-Value

Rank of p-Value 
(lowest to highest)

α � Rank of 
Number of tests

i
Is value in (3) less than or 

equal to value in (5)?

0.0664 3.1966 0.0014 1 0.0025 Yes
0.0645 2.2463 0.0247 2 0.0050 No
0.0642 2.0993 0.0358 3 0.0075 No
0.0642 2.0756 0.0379 4 0.0100 No
0.0641 2.0723 0.0382 5 0.0125 No
0.0637 1.8627 0.0625 6 0.0150 No

Note: Level of significance = 5%.

So, what is the conclusion from looking at p-values and the multiple testing 
problem?

■■ First, if we sample, test, and find a result that is not statistically significant, this 
result is not wrong; in fact, the null hypothesis may well be true.

■■ Second, if the power of the test is low or the sample size is small, we should be 
cautious because there is a good chance of a false positive.

■■ Third, when we perform a hypothesis test and determine the critical values, 
these values are based on the assumption that the test is run once. Running 
multiple tests on data risks data snooping, which may result in spurious results. 
Determine the dataset and perform the test, but do not keep performing tests 
repeatedly to search out statistically significant results, because you may, by 
chance, find them (i.e., false positives).

■■ Fourth, in very large samples, we will find that nearly every test is significant. 
The approach to use to address this issue is to draw different samples; if the 
results are similar, the results are more robust.

EXAMPLE 6  

False Discovery and Multiple Tests
A researcher is examining the mean return on assets of publicly traded compa-
nies that constitute an index of 2,000 mid- cap stocks and is testing hypotheses 
concerning whether the mean is equal to 15%: H0: µROA = 15 versus Ha: µROA 
≠ 15. She uses a 10% level of significance and collects a sample of 50 firms. She 
wants to examine the robustness of her analysis, so she repeats the collection 
and test of the return on assets 30 times. The results for the samples with the 
five lowest p-values are given in Exhibit 13.
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Exhibit 13   Five Lowest p-Values of the 30 Samples 
Tested

Sample
Calculated  
z-Statistic p-Value

Ranked  
p-Value

1 3.203 0.00136 1
5 3.115 0.00184 2
14 2.987 0.00282 3
25 2.143 0.03211 4
29 1.903 0.05704 5

1 Of the 30 samples tested, how many should the researcher expect, on 
average, to have p-values less than the level of significance?

2 What are the corrected p-values based on her selected level of signifi-
cance, and what is the effect on her decision?

Solution to 1
Of the 30 samples tested, she should expect 30 × 0.10 = 3 to have significant 
results just by chance. Consider why she ended up with more than three. Three 
is based on large sample sizes and large numbers of samples. Using a limited 
sample size (i.e., 50) and number of samples (i.e., 30), there is a risk of a false 
discovery with repeated samples and tests.

Solution to 2
Applying the BH criteria, the researcher determines the adjusted p- values shown 
in Exhibit 14.

Exhibit 14   Adjusted p-Values for Five Lowest p-Values from 30 Samples Tested

Calculated 
z-Statistic p-Value

Rank of 
p-Value

α � Rank of 
Number of tests

i
Is p-value less than or  

equal to adjusted p-value?

3.203 0.00136 1 0.00333 Yes
3.115 0.00184 2 0.00667 Yes
2.987 0.00282 3 0.01000 Yes
2.143 0.03211 4 0.01333 No
1.903 0.05704 5 0.01667 No

On the basis of the results in Exhibit 14, there are three samples with p-values 
less than their adjusted p-values. So, the number of significant sample results is 
the same as would be expected from chance, given the 10% level of significance. 
The researcher concludes that the results for the samples with Ranks 4 and 5 
are false discoveries, and she has not uncovered any evidence from her testing 
that supports rejecting the null hypothesis.
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TESTS CONCERNING A SINGLE MEAN

g identify the appropriate test statistic and interpret the results for a hypothesis 
test concerning the population mean of both large and small samples when the 
population is normally or approximately normally distributed and the variance 
is (1) known or (2) unknown

Hypothesis tests concerning the mean are among the most common in practice. The 
sampling distribution of the mean when the population standard deviation is unknown 
is t-distributed, and when the population standard deviation is known, it is normally 
distributed, or z-distributed. Since the population standard deviation is unknown in 
almost all cases, we will focus on the use of a t-distributed test statistic.

The t-distribution is a probability distribution defined by a single parameter known 
as degrees of freedom (df ). Like the standard normal distribution, a t-distribution is 
symmetrical with a mean of zero, but it has a standard deviation greater than 1 and 
generally fatter tails. As the number of degrees of freedom increases with the sample 
size, the t-distribution approaches the standard normal distribution.

For hypothesis tests concerning the population mean of a normally distributed 
population with unknown variance, the theoretically correct test statistic is the t-sta-
tistic. What if a normal distribution does not describe the population? The t-statistic 
is robust to moderate departures from normality, except for outliers and strong skew-
ness. When we have large samples, departures of the underlying distribution from 
the normal case are of increasingly less concern. The sample mean is approximately 
normally distributed in large samples according to the central limit theorem, whatever 
the distribution describing the population. A traditional rule of thumb is that the 
normal distribution is used in cases when the sample size is larger than 30, but the 
more precise testing uses the t-distribution. Moreover, with software that aids us in 
such testing, we do not need to resort to rules of thumb.

If the population sampled has unknown variance, then the test statistic for hypoth-
esis tests concerning a single population mean, μ, is

t
X

s
n

n� �
�

1
0� ,

where

 X  = sample mean
 µ0 = hypothesized value of the population mean
 s = sample standard deviation
 n = sample size
 s s

nX =  = estimate of the sample mean standard error

This test statistic is t-distributed with n − 1 degrees of freedom, which we can write 
as tn-1. For simplicity, we often drop the subscript n − 1 because each particular test 
statistic has specified degrees of freedom, as we presented in Exhibit 4.

Consider testing whether Investment One’s returns (from Exhibit 1) are different 
from 6%; that is, we are testing H0: μ = 6 versus Ha: μ ≠ 6. If the calculated t-distrib-
uted test statistic is outside the bounds of the critical values based on the level of 
significance, we will reject the null hypothesis in favor of the alternative. If we have 
a sample size of 33, there are n − 1 = 32 degrees of freedom. At a 5% significance 
level (two tailed) and 32 degrees of freedom, the critical t-values are ±2.037. We can 
determine the critical values from software:

■■ Excel [T.INV(0.025,32) and T.INV(0.975,32)]

9
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■■ R [qt(c(.025,.975),32)]
■■ Python [from scipy.stats import t and t.ppf(.025,32) and t.ppf(.975,32)]

Suppose that the sample mean return is 5.2990% and the sample standard deviation 
is 1.4284%. The calculated test statistic is

t � �
� �

5 2990 6
1 4284

33

2 8192.
.

.

with 32 degrees of freedom. The calculated value is less than −2.037, so we reject the 
null that the population mean is 6%, concluding that it is different from 6%.

EXAMPLE 7  

Risk and Return Characteristics of an Equity Mutual Fund
Suppose you are analyzing Sendar Equity Fund, a midcap growth fund that has 
been in existence for 24 months. During this period, it has achieved a mean 
monthly return of 1.50%, with a sample standard deviation of monthly returns 
of 3.60%. Given its level of market risk and according to a pricing model, this 
mutual fund was expected to have earned a 1.10% mean monthly return during 
that time period. Assuming returns are normally distributed, are the actual results 
consistent with an underlying or population mean monthly return of 1.10%?

1 Test the hypothesis using a 5% level of significance.
2 Test the hypothesis using the 95% confidence interval.

Solution to 1

Step 1 State the hypotheses. H0: μ = 1.1% versus Ha: μ ≠ 1.1% 
Step 2 Identify the appropriate test 

statistic. t
X

s
n

�
� �0

 
with 24 − 1 =23 degrees of freedom.

Step 3 Specify the level of significance. α = 5% (two tailed).
Step 4 State the decision rule. Critical t-values = ±2.069.

Reject the null if the calculated t-statistic is less than −2.069, and 
reject the null if the calculated t-statistic is greater than +2.069.
Excel 
          Lower: T.INV(0.025,23)
          Upper: T.INV(0.975,23)
R qt(c(.025,.975),23)
Python from scipy.stats import t
          Lower: t.ppf(.025,23)
          Upper: t.ppf(.975,23)

Step 5 Calculate the test statistic.
t � �

�
1 5 1 1
3 6

24

0 54433. .
.

.

Step 6 Make a decision. Fail to reject the null hypothesis because the calculated t-statistic 
falls between the two critical values. There is not sufficient evidence 
to indicate that the population mean monthly return is different 
from 1.10%.
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Solution to 2

The 95% confidence interval is X s
n

�
�

�
�

�

�
�Critical value , so

1 5 2 069 3 6
24

1 5 2 069 3 6
24

1 5 1 5204

. . . , . . .

. .

� �
�
�

�
�
� � �

�
�

�
�
�

�
�
�

�
�
�

�

 

,, 

, 3.0204

1 5 1 5204

0 0204

. .

.

�� �
�� �

The hypothesized value of 1.1% is within the bounds of the 95% confidence 
interval, so we fail to reject the null hypothesis.

We stated previously that when population variance is not known, we use a t-test 
for tests concerning a single population mean. Given at least approximate normality, 
the t-distributed test statistic is always called for when we deal with small samples 
and do not know the population variance. For large samples, the central limit theo-
rem states that the sample mean is approximately normally distributed, whatever the 
distribution of the population. The t-statistic is still appropriate, but an alternative 
test may be more useful when sample size is large.

For large samples, practitioners sometimes use a z-test in place of a t-test for tests 
concerning a mean. The justification for using the z-test in this context is twofold. 
First, in large samples, the sample mean should follow the normal distribution at least 
approximately, as we have already stated, fulfilling the normality assumption of the 
z-test. Second, the difference between the rejection points for the t-test and z-test 
becomes quite small when the sample size is large. Since the t-test is readily available 
as statistical program output and theoretically correct for unknown population vari-
ance, we present it as the test of choice.

In a very limited number of cases, we may know the population variance; in such 
cases, the z-statistic is theoretically correct. In this case, the appropriate test statistic 
is what we used earlier (Equation 2):

z
X

n

�
� �
�

0 .

In cases of large samples, a researcher may use the z-statistic, substituting the sample 
standard deviation (s) for the population standard deviation (σ) in the formula. When 
we use a z-test, we usually refer to a rejection point in Exhibit 15.

Exhibit 15   Critical Values for Common Significance Levels for the Standard 
Normal Distribution

Level of 
Significance Alternative

Reject the Null if . . .

below the  
Critical Value

above the  
Critical Value

0.01 Two sided: H0: μ = μ0, Ha: μ ≠ μ0 −2.576 2.576
One sided: H0: μ ≤ μ0, Ha: μ > μ0 2.326

One sided: H0: μ ≥ μ0, Ha: μ < μ0 −2.326

(continued)
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Level of 
Significance Alternative

Reject the Null if . . .

below the  
Critical Value

above the  
Critical Value

0.05 Two sided: H0: μ = μ0, Ha: μ ≠ μ0 −1.960 1.960
One sided: H0: μ ≤ μ0, Ha: μ > μ0 1.645

One sided: H0: μ ≥ μ0, Ha: μ < μ0 −1.645

EXAMPLE 8  

Testing the Returns on the ACE High Yield Index
Suppose we want to test whether the daily return in the ACE High Yield Total 
Return Index is different from zero. Collecting a sample of 1,304 daily returns, 
we find a mean daily return of 0.0157%, with a standard deviation of 0.3157%.

1. Test whether the mean daily return is different from zero at the 5% level 
of significance.

2. Using the z-distributed test statistic as an approximation, test whether the 
mean daily return is different from zero at the 5% level of significance.

Solution to 1

Step 1 State the hypotheses. H0: μ = 0% versus Ha: μ ≠ 0% 
Step 2 Identify the appropriate test 

statistic. t
X

s
n

�
� �0

 
with 1,304 − 1 = 1,303 degrees of freedom.

Step 3 Specify the level of significance. α = 5%.
Step 4 State the decision rule. Critical t-values = ±1.962.

Reject the null if the calculated t-statistic is less than −1.962, and 
reject the null if the calculated t-statistic is greater than +1.962.
Excel
        Lower: T.INV(0.025,1303)
        Upper: T.INV(0.975,1303)
R qt(c(.025,.975),1303)
Python from scipy.stats import t
          Lower: t.ppf(.025,1303)
          Upper: t.ppf(.975,1303)

Step 5 Calculate the test statistic.
t � �

�
0 0157 0

0 3157
1 304

1 79582.
.

,

.

Step 6 Make a decision. Fail to reject the null because the calculated t-statistic falls between 
the two critical values. There is not sufficient evidence to indicate 
that the mean daily return is different from 0%.

Exhibit 15   (Continued)
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Solution to 2

Step 1 State the hypotheses. H0: μ = 0% versus Ha: μ ≠ 0% 
Step 2 Identify the appropriate test 

statistic. z
X

s
n

�
� �0

 
with 1,304 − 1 = 1,303 degrees of freedom.

Step 3 Specify the level of 
significance.

α = 5%.

Step 4 State the decision rule. Critical t-values = ±1.960.
Reject the null if the calculated z-statistic is less than −1.960, and reject the 
null if the calculated z-statistic is greater than +1.960.
Excel Lower: NORM.S.INV(0.025)

Upper: NORM.S.INV(0.975)

R qnorm(.025,lower.tail=TRUE)
qnorm(.975,lower.tail=FALSE)

Python from scipy.stats import norm
Lower: norm.ppf(.025,23)

Upper: norm.ppf(.975,23)

     

z � �
�

0 0157 0
0 3157

1 304

1 79582.
.

,

.

      Fail to reject the null because the calculated z-statistic falls between 
the two critical values. There is not sufficient evidence to indicate that 
the mean daily return is different from 0%.

Step 5 Calculate the test statistic.

Step 6 Make a decision.

TEST CONCERNING DIFFERENCES BETWEEN MEANS 
WITH INDEPENDENT SAMPLES

h identify the appropriate test statistic and interpret the results for a hypothesis 
test concerning the equality of the population means of two at least approxi-
mately normally distributed populations based on independent random samples 
with equal assumed variances

We often want to know whether a mean value—for example, a mean return—differs 
for two groups. Is an observed difference due to chance or to different underlying 
values for the mean? We test this by drawing a sample from each group. When it is 
reasonable to believe that the samples are from populations at least approximately 
normally distributed and that the samples are also independent of each other, we use 
the test of the differences in the means. We may assume that population variances are 
equal or unequal. However, our focus in discussing the test of the differences of means 
is using the assumption that the population variances are equal. In the calculation of 
the test statistic, we combine the observations from both samples to obtain a pooled 
estimate of the common population variance.

10
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Let µ1 and µ2 represent, respectively, the population means of the first and 
second populations. Most often we want to test whether the population means are 
equal or whether one is larger than the other. Thus, we formulate the following sets 
of hypotheses:

Two sided: 

H0: µ1 − µ2 = 0 versus Ha: µ1 − µ2 ≠ 0,

or, equivalently,

H0: µ1 = µ2 versus Ha: µ1 ≠ µ2

One sided (right side): 

H0: µ1 − µ2 ≤ 0 versus Ha: µ1 − µ2 > 0,

or, equivalently,

H0: µ 1 ≤ µ 2 versus Ha: µ 1 > µ 2

One sided (left side): 

H0: µ 1 − µ 2 ≥ 0 versus Ha: µ 1 − µ 2 < 0,

or, equivalently,

H0: µ 1 ≥ µ 2 versus Ha: µ 1 < µ 2

We can, however, formulate other hypotheses, where the difference is something other 
than zero, such as H0: µ 1 − µ 2 = 2 versus Ha: µ 1 − µ 2 ≠ 2. The procedure is the same.

When we can assume that the two populations are normally distributed and that 
the unknown population variances are equal, we use a t-distributed test statistic based 
on independent random samples:

t
X X

s
n

s
n

p p

�
�� � � �� �

�

1 2 1 2
2

1

2

2

� �
,

Where s
n s n s

n np
2 1 1

2
2 2

2

1 2

1 1
2

�
�� � � �� �

� �
 is a pooled estimator of the common variance. 

As you can see, the pooled estimate is a weighted average of the two samples’ variances, 
with the degrees of freedom for each sample as the weight. The number of degrees 
of freedom for this t-distributed test statistic is n1 + n2 − 2.

EXAMPLE 9  

Returns on the ACE High Yield Index Compared for Two 
Periods
Continuing the example of the returns in the ACE High Yield Total Return 
Index, suppose we want to test whether these returns, shown in Exhibit 16, are 
different for two different time periods, Period 1 and Period 2.

(5)

© CFA Institute. For candidate use only. Not for distribution.



Test Concerning Differences between Means with Independent Samples 383

Exhibit 16   Descriptive Statistics for ACE High Yield 
Total Return Index for Periods 1 and 2

Period 1 Period 2

Mean 0.01775% 0.01134%
Standard deviation 0.31580% 0.38760%
Sample size 445 days 859 days

Note that these periods are of different lengths and the samples are independent; 
that is, there is no pairing of the days for the two periods.

Test whether there is a difference between the mean daily returns in Period 
1 and in Period 2 using a 5% level of significance.

Step 1 State the hypotheses. H0: μPeriod1 = μPeriod2 versus Ha: μPeriod1 ≠ μPeriod2 

Step 2 Identify the appropriate test 
statistic. t

X X

s
n

s
n

Period Period Period Period

p

period

p

p

�
� � �

�

( ) ( )1 2 1 2
2

1

2

� �

eeriod 2

,  

where s
n s n s

n np
period Period period Period

period p

2 1 1
2

2 2
2

1

1 1
�

� � �

�

( ) ( )

eeriod 2 2�
 

with 445 + 859 − 2 =1,302 degrees of freedom.
Step 3 Specify the level of significance. α = 5%.
Step 4 State the decision rule. Critical t-values = ±1.962.

Reject the null if the calculated t-statistic is less than −1.962, and 
reject the null if the calculated t-statistic is greater than +1.962.
Excel
            Lower: T.INV(0.025,1302)
            Upper: T.INV(0.975,1302)
R qt(c(.025,.975),1302)
Python from scipy.stats import t
           Lower: t.ppf(.025,1302)
           Upper: t.ppf(.975,1302)

Step 5 Calculate the test statistic.
s

t

p
2 445 1 0 09973 859 1 0 15023

445 859 2
0 1330

0 0177

�
� � �

� �
�

�

( ) . ( ) . .

( . 55 0 01134 0
0 1330

445
0 1330

859

0 0064
0 0213

0 3009� �

�
� �

. )
. .

.

.
. .

Step 6 Make a decision. Fail to reject the null because the calculated t-statistic falls within 
the bounds of the two critical values. We conclude that there is 
insufficient evidence to indicate that the returns are different for 
the two time periods.
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TEST CONCERNING DIFFERENCES BETWEEN MEANS 
WITH DEPENDENT SAMPLES

 i. identify the appropriate test statistic and interpret the results for a hypothesis 
test concerning the mean difference of two normally distributed populations

When we compare two independent samples, we use a t-distributed test statistic that 
uses the difference in the means and a pooled variance. An assumption for the validity 
of those tests is that the samples are independent—that is, unrelated to each other. 
When we want to conduct tests on two means based on samples that we believe are 
dependent, we use the test of the mean of the differences.

The t-test in this section is based on data arranged in paired observations, and the 
test itself is sometimes referred to as the paired comparisons test. Paired observa-
tions are observations that are dependent because they have something in common. 
For example, we may be concerned with the dividend policy of companies before and 
after a change in the tax law affecting the taxation of dividends. We then have pairs of 
observations for the same companies; these are dependent samples because we have 
pairs of the sample companies before and after the tax law change. We may test a 
hypothesis about the mean of the differences that we observe across companies. For 
example, we may be testing whether the mean returns earned by two investment strat-
egies were equal over a study period. The observations here are dependent in the sense 
that there is one observation for each strategy in each month, and both observations 
depend on underlying market risk factors. What is being tested are the differences, 
and the paired comparisons test assumes that the differences are normally distributed. 
By calculating a standard error based on differences, we can use a t-distributed test 
statistic to account for correlation between the observations.

How is this test of paired differences different from the test of the differences in 
means in independent samples? The test of paired comparisons is more powerful than 
the test of the differences in the means because by using the common element (such 
as the same periods or companies), we eliminate the variation between the samples 
that could be caused by something other than what we are testing.

Suppose we have observations for the random variables XA and XB and that the 
samples are dependent. We arrange the observations in pairs. Let di denote the differ-
ence between two paired observations. We can use the notation di = xAi − xBi, where 
xAi and xBi are the ith pair of observations, i = 1, 2, . . . , n, on the two variables. Let μd 
stand for the population mean difference. We can formulate the following hypotheses, 
where μd0 is a hypothesized value for the population mean difference:

Two sided: H0: µd = µd0 versus Ha: µd ≠ µd0
One sided (right side): H0: µd ≤ µd0 versus Ha: µd > µd0
One sided (left side) H0: µd ≥ µd0 versus Ha: µd < µd0

In practice, the most commonly used value for µd0 is zero.
We are concerned with the case of normally distributed populations with unknown 

population variances, and we use a t-distributed test statistic. We begin by calculat-
ing d ,� the sample mean difference, or the mean of the differences, di:

d
n

di
i

n
�

�
�1

1
,

where n is the number of pairs of observations. The sample standard deviation, sd, is 
the standard deviation of the differences, and the standard error of the mean differ-

ences is s
s

nd
d= .

11

(6)
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When we have data consisting of paired observations from samples generated 
by normally distributed populations with unknown variances, the t-distributed test 
statistic is

t
d

s
d

d
�

� � 0

with n − 1 degrees of freedom, where n is the number of paired observations.
For example, suppose we want to see if there is a difference between the returns 

for Investments One and Two (from Exhibit 1), for which we have returns in each of 
33 years. Using a 1% level of significance, the critical values for a two- sided hypothesis 
test are ±2.7385. Lining up these returns by the years and calculating the differences, 
we find a sample mean difference ( )d of 0.10353% and a standard deviation of these 
differences (sd) of 2.35979%. Therefore, the calculated t-statistic for testing whether 
the mean of the differences is equal to zero is

t � �
�

0 10353 0
2 35979 33

0 25203.
.

.

with 32 degrees of freedom. In this case, we fail to reject the null because the t-sta-
tistic falls within the bounds of the two critical values. We conclude that there is not 
sufficient evidence to indicate that the returns for Investment One and Investment 
Two are different.

Importantly, if we think of the differences between the two samples as a single 
sample, then the test of the mean of differences is identical to the test of a single 
sample mean.

EXAMPLE 10  

Testing for the Mean of the Differences
In Exhibit 17, we report the quarterly returns for a three- year period for two 
actively managed portfolios specializing in precious metals. The two portfolios 
are similar in risk and had nearly identical expense ratios. A major investment 
services company rated Portfolio B more highly than Portfolio A. In investigating 
the portfolios’ relative performance, suppose we want to test the hypothesis that 
the mean quarterly return on Portfolio A is equal to the mean quarterly return 
on Portfolio B during the three- year period. Since the two portfolios share 
essentially the same set of risk factors, their returns are not independent, so a 
paired comparisons test is appropriate. Use a 10% level of significance.

Exhibit 17   Quarterly Returns for Two Actively Managed Precious 
Metals Portfolios

Year Quarter
Portfolio A 

(%)
Portfolio B 

(%)
Difference 

(Portfolio A − Portfolio B)

1 1 4.50 0.50 4.00
1 2 −4.10 −3.10 −1.00
1 3 −14.50 −16.80 2.30
1 4 −5.50 −6.78 1.28
2 1 12.00 −2.00 14.00
2 2 −7.97 −8.96 0.99
2 3 −14.01 −10.01 −4.00

(7)

(continued)
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Year Quarter
Portfolio A 

(%)
Portfolio B 

(%)
Difference 

(Portfolio A − Portfolio B)

2 4 4.11 −6.31 10.42
3 1 2.34 −5.00 7.34
3 2 26.36 12.77 13.59
3 3 10.72 9.23 1.49
3 4 3.60 1.20 2.40
Average 1.46 -2.94 4.40083
Standard 
deviation 11.18 7.82 5.47434

Using this sample information, we can summarize the test as follows:

Step 1 State the hypotheses. H0: μd0 = 0 versus Ha: μd0 ≠ 0 
Step 2 Identify the appropriate test 

statistic. t
d

s
d

d
�

� � 0

Step 3 Specify the level of significance. 10%
Step 3 State the decision rule. With 12 − 1 = 11 degrees of freedom, the critical values are ±1.796.

We reject the null hypothesis if the calculated test statistic is below 
−1.796 or above +1.796.
Excel 
            Lower: T.INV(0.05,11)
            Upper: T.INV(0.95,11)
R qt(c(.05,.95),11)
Python from scipy.stats import t
             Lower: t.ppf(.05,11)
             Upper: t.ppf(.95,11)

Step 4 Calculate the test statistic. d

s

t

d

�

� �

�
�

�

4 40083
5 47434

12
1 58031

4 40083 0
1 58031

2 78480

.
. .

.
.

.

Step 5 Make a decision. Reject the null hypothesis because the calculated t-statistic falls 
outside the bounds of the two critical values. There is sufficient 
evidence to indicate that the mean of the differences of returns is 
not zero.

The following example illustrates the application of this test to evaluate two com-
peting investment strategies.

Exhibit 17   (Continued)
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EXAMPLE 11  

A Comparison of the Returns of Two Indexes
Suppose we want to compare the returns of the ACE High Yield Index with 
those of the ACE BBB Index. We collect data over 1,304 days for both indexes 
and calculate the means and standard deviations as shown in Exhibit 18.

Exhibit 18   Mean and Standard Deviations for the ACE High Yield 
Index and the ACE BBB Index

ACE High Yield 
Index 

(%)
ACE BBB  

Index (%)
Difference  

(%)

Mean return 0.0157 0.0135 −0.0021
Standard deviation 0.3157 0.3645 0.3622

Using a 5% level of significance, determine whether the mean of the differences 
is different from zero.

Solution

Step 1 State the hypotheses. H0: μd0 = 0 versus Ha: μd0 ≠ 0 
Step 2 Identify the appropriate test 

statistic. t
d

s
d

d
�

� � 0

Step 3 Specify the level of significance. 5%
Step 4 State the decision rule. With 1,304 − 1 = 1,303 degrees of freedom, the critical values are 

±1.962.
We reject the null hypothesis if the calculated t-statistic is less 
than −1.962 or greater than +1.962.
Excel 
            Lower: T.INV(0.025,1303)
            Upper: T.INV(0.975,1303)
R qt(c(.025,.975),1303
Python from scipy.stats import t
            Lower: t.ppf(.025,1303)
            Upper: t.ppf(.975,1303)

Step 5 Calculate the test statistic. d

s
s

n

t

d
d

� �

� � �

�
� �

� �

0 0021
0 3622

1 304
0 01003

0 00210 0
0 01003

. %
.
,

. %

.
.

00 20937.

Step 6 Make a decision. Fail to reject the null hypothesis because the calculated t-statistic 
falls within the bounds of the two critical values. There is insuf-
ficient evidence to indicate that the mean of the differences of 
returns is different from zero.
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TESTING CONCERNING TESTS OF VARIANCES (CHI- 
SQUARE TEST)

j identify the appropriate test statistic and interpret the results for a hypothesis 
test concerning (1) the variance of a normally distributed population and (2) the 
equality of the variances of two normally distributed populations based on two 
independent random samples

Often, we are interested in the volatility of returns or prices, and one approach to 
examining volatility is to evaluate variances. We examine two types of tests involving 
variance: tests concerning the value of a single population variance and tests concerning 
the difference between two population variances.

12.1 Tests of a Single Variance
Suppose there is a goal to keep the variance of a fund’s returns below a specified target. 
In this case, we would want to compare the observed sample variance of the fund 
with the target. Performing a test of a population variance requires specifying the 
hypothesized value of the variance, σ0

2  . We can formulate hypotheses concerning 
whether the variance is equal to a specific value or whether it is greater than or less 
than a hypothesized value:

Two- sided alternative: H Ha0
2

0
2 2

0
2: :� � � �� � versus 

One- sided alternative (right tail): H Ha0
2

0
2 2

0
2: :� � � � ��  versus 

One- sided alternative (left tail): H Ha0
2

0
2 2

0
2: :� � � �� � versus 

In tests concerning the variance of a single normally distributed population, we 
make use of a chi- square test statistic, denoted χ2. The chi- square distribution, unlike 
the normal distribution and t-distribution, is asymmetrical. Like the t-distribution, 
the chi- square distribution is a family of distributions, with a different distribution 
for each possible value of degrees of freedom, n − 1 (n is sample size). Unlike the 
t-distribution, the chi- square distribution is bounded below by zero; χ2 does not take 
on negative values.

If we have n independent observations from a normally distributed population, 
the appropriate test statistic is

�
�

2
2

0
2
1

�
�( )n s

with n − 1 degrees of freedom. The sample variance (s2) is in the numerator, and the 
hypothesized variance ( )σ0

2 is in the denominator.
In contrast to the t-test, for example, the chi- square test is sensitive to violations 

of its assumptions. If the sample is not random or if it does not come from a normally 
distributed population, inferences based on a chi- square test are likely to be faulty.

Since the chi- square distribution is asymmetric and bounded below by zero, we 
no longer have the convenient ± for critical values as we have with the z- and the 
t-distributions, so we must either use a table of chi- square values or use software 
to generate the critical values. Consider a sample of 25 observations, so we have 24 
degrees of freedom. We illustrate the rejection regions for the two- and one- sided 
tests at the 5% significance level in Exhibit 19.

12

(8)
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Exhibit 19   Rejection Regions (Shaded) for the Chi- Square Distribution (df = 
24) at 5% Significance

A. Ho: σ2 = σ2 versus Ha: σ2 ≠ σ2
0 0

00 5.75.7 11.411.4 17.117.1 22.822.8 28.528.5 34.234.2 39.939.9 45.645.6 51.351.3 57.057.0 62.762.7

B. Ho: σ2 ≤ σ2 versus Ha: σ2 > σ2
0 0

00 5.75.7 11.411.4 17.117.1 22.822.8 28.528.5 34.234.2 39.939.9 45.645.6 51.351.3 57.057.0 62.762.7

C. Ho: σ2 ≥ σ2 versus Ha: σ2 < σ2
0 0

00 5.75.7 11.411.4 17.117.1 22.822.8 28.528.5 34.234.2 39.939.9 45.645.6 51.351.3 57.057.0 62.762.7

Critical values are 12.40115 and 39.36408

Critical value is 36.41503

Critical value is 13.84843
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EXAMPLE 12  

Risk and Return Characteristics of an Equity Mutual Fund
You continue with your analysis of Sendar Equity Fund, a midcap growth fund 
that has been in existence for only 24 months. During this period, Sendar Equity 
achieved a mean monthly return of 1.50% and a standard deviation of monthly 
returns of 3.60%.

1 Using a 5% level of significance, test whether the standard deviation of 
returns is different from 4%.

2 Using a 5% level of significance, test whether the standard deviation of 
returns is less than 4%.

Solution to 1

Step 1 State the hypotheses. H0: σ2 = 16 versus Ha: σ2 ≠ 16 
Step 2 Identify the appropriate test 

statistic. �
�

2
2

0
2
1

�
�( )n s

Step 3 Specify the level of significance. 5%
Step 4 State the decision rule. With 24 − 1 = 23 degrees of freedom, the critical values are 

11.68855 and 38.07563.
We reject the null hypothesis if the calculated χ2 statistic is less 
than 11.68855 or greater than 38.07563.
Excel 
            Lower: CHISQ.INV(0.025,23)
            Upper: CHISQ.INV(0.975,23)
R qchisq(c(.025,.975),23)
Python from scipy.stats import chi2
            Lower: chi2.ppf(.025,23)
           Upper: chi2.ppf(.975,23)

Step 5 Calculate the test statistic.
�2 24 1 12 96

16
18 63000�

�
�

( ) . .

Step 6 Make a decision Fail to reject the null hypothesis because the calculated χ2 statistic 
falls within the bounds of the two critical values. There is insuffi-
cient evidence to indicate that the variance is different from 16% 
(or, equivalently, that the standard deviation is different from 4%).

Solution to 2:

Step 1 State the hypotheses. H0: σ2 ≥ 16 versus Ha: σ2 < 16 
Step 2 Identify the appropriate test 

statistic. �
�

2
2

0
2
1

�
�( )n s

Step 3 Specify the level of significance. 5%
Step 4 State the decision rule. With 24 − 1 = 23 degrees of freedom, the critical value is 13.09051. 

We reject the null hypothesis if the calculated χ2 statistic is less 
than 13.09051.
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Excel CHISQ.INV(0.05,23)
R qchisq(.05,23)
Python from scipy.stats import chi2
           chi2.ppf(.05,23)

Step 5 Calculate the test statistic.
�2 24 1 12 96

16
18 63000�

�
�

( ) . .

Step 6 Make a decision. Fail to reject the null hypothesis because the calculated χ2 statistic 
is greater than the critical value. There is insufficient evidence to 
indicate that the variance is less than 16% (or, equivalently, that the 
standard deviation is less than 4%).

12.2 Test Concerning the Equality of Two Variances (F-Test)

j identify the appropriate test statistic and interpret the results for a hypothesis 
test concerning (1) the variance of a normally distributed population and (2) the 
equality of the variances of two normally distributed populations based on two 
independent random samples

There are many instances in which we want to compare the volatility of two samples, 
in which case we can test for the equality of two variances. Examples include com-
parisons of baskets of securities against indexes or benchmarks, as well as comparisons 
of volatility in different periods. Suppose we have a hypothesis about the relative 
values of the variances of two normally distributed populations with variances of σ1

2  

and σ2
2 , distinguishing the two populations as 1 or 2. We can formulate the hypotheses 

as two sided or one sided:

Two- sided alternative:

H Ha0 1
2

2
2

1
2

2
2: :� � � �� � versus 

or, equivalently,

H Ha0
1
2

2
2

1
2

2
21 1: :

�

�

�

�
� � versus 

One- sided alternative (right side):

H Ha0 1
2

2
2

1
2

2
2: :� � � �� � versus  

or, equivalently,

H Ha0
1
2

2
2

1
2

2
21 1: :

�

�

�

�
� � versus  

One- sided alternative (left side):

H Ha0 1
2

2
2

1
2

2
2: :� � � �� � versus  

or, equivalently,

H Ha0
1
2

2
2

1
2

2
21 1: :

�

�

�

�
� � versus  
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Given independent random samples from these populations, tests related to 
these hypotheses are based on an F-test, which is the ratio of sample variances. 
Tests concerning the difference between the variances of two populations make use 
of the F-distribution. Like the chi- square distribution, the F-distribution is a family 
of asymmetrical distributions bounded from below by zero. Each F-distribution is 
defined by two values of degrees of freedom, which we refer to as the numerator and 
denominator degrees of freedom. The F-test, like the chi- square test, is not robust to 
violations of its assumptions.

Suppose we have two samples, the first with n1 observations and a sample vari-
ance s1

2  and the second with n2 observations and a sample variance s2
2 . The samples 

are random, independent of each other, and generated by normally distributed pop-
ulations. A test concerning differences between the variances of the two populations 
is based on the ratio of sample variances, as follows:

F s
s

= 1
2

2
2

with df1 = (n1 − 1) numerator degrees of freedom and df2 = (n2 − 1) denominator 
degrees of freedom. Note that df1 and df2 are the divisors used in calculating s1

2  
and s2

2 , respectively.
When we rely on tables to arrive at critical values, a convention is to use the 

larger of the two sample variances in the numerator in Equation 9; doing so reduces 
the number of F-tables needed. The key is to be consistent with how the alternative 
hypothesis is specified and the order of the sample sizes for the degrees of freedom.

Consider two samples, the first with 25 observations and the second with 40 
observations. We show the rejection region and critical values in Exhibit 20 for two- 
and one- sided alternative hypotheses at the 5% significance level.

(9)
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Exhibit 20   Rejection Regions (Shaded) for the F-Distribution Based on 
Sample Sizes of 25 and 40 at 5% Significance

A. Ho: σ2 = σ2 versus Ha: σ2 ≠ σ2
2 21 1

00 0.290.29 0.570.57 0.850.85 1.141.14 1.421.42 1.711.71 1.991.99 2.282.28 2.562.56 2.852.85 3.133.13

00 0.290.29 0.570.57 0.850.85 1.141.14 1.421.42 1.711.71 1.991.99 2.282.28 2.562.56 2.852.85 3.133.13

00 0.290.29 0.570.57 0.850.85 1.141.14 1.421.42 1.711.71 1.991.99 2.282.28 2.562.56 2.852.85 3.133.13

B. Ho: σ2 ≤ σ2 versus Ha: σ2 > σ2
2 21 1

C. Ho: σ2 ≥ σ2 versus Ha: σ2 < σ2
2 21 1

Critical values are 0.49587 and 2.15095

Critical value is 1.89566

Critical value is 0.55551

Consider Investments One and Two (from Exhibit 1), with standard deviations 
of returns of 1.4284 and 2.5914, respectively, calculated over the 33- year period. If 
we want to know whether the variance of Investment One is different from that of 
Investment Two, we use the F-distributed test statistic. With 32 and 32 degrees of 
freedom, the critical values are 0.49389 and 2.02475 at the 5% significance level. The 
calculated F-statistic is

F = =
2 5914
1 4284

3 29131
2

2
.
.

. .

Therefore, we reject the null hypothesis that the variances of these two investments 
are the same because the calculated F-statistic is outside of the critical values. We 
can conclude that one investment is riskier than the other.

© CFA Institute. For candidate use only. Not for distribution.



Reading 6 ■ Hypothesis Testing394

EXAMPLE 13  

Volatility and Regulation
You are investigating whether the population variance of returns on a stock 
market index changed after a change in market regulation. The first 418 weeks 
occurred before the regulation change, and the second 418 weeks occurred 
after the regulation change. You gather the data in Exhibit 21 for 418 weeks of 
returns both before and after the change in regulation. You have specified a 5% 
level of significance.

Exhibit 21   Index Returns and Variances before and after the Market 
Regulation Change

n

Mean Weekly 
Return 

(%) Variance of Returns

Before regulation change 418 0.250 4.644
After regulation change 418 0.110 3.919

1 Test whether the variance of returns is different before the regulation 
change versus after the regulation change, using a 5% level of significance.

2 Test whether the variance of returns is greater before the regulation 
change versus after the regulation change, using a 5% level of significance.

Solution to 1

Step 1 State the hypotheses. H HBefore After a Before After0
2 2 2 2: :� � � �� � versus 

 
Step 2 Identify the appropriate test 

statistic. F
s

s
Before

After
=

2

2

Step 3 Specify the level of significance. 5%
Step 4 State the decision rule. With 418 − 1 = 417 and 418 − 1 = 417 degrees of freedom, the 

critical values are 0.82512 and 1.21194.
Reject the null if the calculated F-statistic is less than 0.82512 or 
greater than 1.21194.
Excel 
            Left side: F.INV(0.025,417,417)
            Right side: F.INV(0.975,417,417)
R qf(c(.025,.975),417,417)
Python from scipy.stats import f
            Left side: f.ppf(.025,417,417)
           Right side: f.ppf(.975,417,417)
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Step 5 Calculate the test statistic.
F = =

4 644
3 919

1 18500.
.

.

Step 6 Make a decision. Fail to reject the null hypothesis since the calculated F-statistic 
falls within the bounds of the two critical values. There is not suf-
ficient evidence to indicate that the weekly variances of returns are 
different in the periods before and after the regulation change.

Solution to 2

Step 1 State the hypotheses. H HBefore After a Before After0
2 2 2 2: :� � � �� � versus 

 
Step 2 Identify the appropriate test 

statistic. F
s

s
Before

After
=

2

2

Step 3 Specify the level of significance. 5%
Step 4 State the decision rule. With 418 − 1 = 417 and 418 − 1 = 417 degrees of freedom, the 

critical value is 1.17502.
We reject the null hypothesis if the calculated F-statistic is greater 
than 1.17502.
Excel F.INV(0.95,417,417)
R qf(.95,417,417)
Python from scipy.stats import f
           f.ppf(.95,417,417)

Step 5 Calculate the test statistic.
F = =

4 644
3 919

1 18500.
.

.

Step 6 Make a decision. Reject the null hypothesis since the calculated F-statistic is 
greater than 1.17502. There is sufficient evidence to indicate that 
the weekly variances of returns before the regulation change are 
greater than the variances after the regulation change.

EXAMPLE 14  

The Volatility of Derivatives Expiration Days
You are interested in investigating whether quadruple witching days—that is, the 
occurrence of stock option, index option, index futures, and single stock futures 
expirations on the same day—exhibit greater volatility than normal trading days. 
Exhibit 22 presents the daily standard deviation of returns for normal trading 
days and quadruple witching days during a four- year period.

Exhibit 22   Standard Deviation of Returns: Normal Trading Days and 
Derivatives Expiration Days

Period Type of Day n Standard Deviation (%)

1 Normal trading days 138 0.821
2 Quadruple witching days 16 1.217

© CFA Institute. For candidate use only. Not for distribution.



Reading 6 ■ Hypothesis Testing396

Test to determine whether the variance of returns for quadruple witching days 
is greater than the variance for non- expiration, normal trading days. Use a 5% 
level of significance.

Solution

Step 1 State the hypotheses. H HPeriod Period a Period Period0 2
2

1
2

2
2

1
2: :� � � �� � versus  

Step 2 Identify the appropriate test 
statistic. F

s
s
Period

Period
= 2

2

1
2

Step 3 Specify the level of significance. 5%
Step 4 State the decision rule. With 16 − 1 = 15 and 138 − 1 = 137 degrees of freedom, the critical 

value is 1.73997.
We reject the null hypothesis if the calculated F-statistic is greater 
than 1.73997.
Excel F.INV(0.95,15,137)
R qf(.95,15,137)
Python from scipy.stats import f
           f.ppf(.95,15,137)

Step 5 Calculate the test statistic.
F = =

1 48109
0 67404

2 19733.
.

.

Step 6 Make a decision. Reject the null hypothesis since the calculated F-statistic is greater 
than 1.73997. There is sufficient evidence to indicate that the 
variance of returns for quadruple witching days is greater than the 
variance for normal trading days.

PARAMETRIC VS. NONPARAMETRIC TESTS

k compare and contrast parametric and nonparametric tests, and describe situa-
tions where each is the more appropriate type of test

The hypothesis- testing procedures we have discussed up to this point have two char-
acteristics in common. First, they are concerned with parameters, and second, their 
validity depends on a definite set of assumptions. Mean and variance, for example, 
are two parameters, or defining quantities, of a normal distribution. The tests also 
make specific assumptions—in particular, assumptions about the distribution of the 
population producing the sample. Any test or procedure with either of these two 
characteristics is a parametric test or procedure. In some cases, however, we are 
concerned about quantities other than parameters of distributions. In other cases, 
we may believe that the assumptions of parametric tests do not hold. In cases where 
we are examining quantities other than population parameters or where assumptions 
of the parameters are not satisfied, a nonparametric test or procedure can be useful.

A nonparametric test is a test that is not concerned with a parameter or a test 
that makes minimal assumptions about the population from which the sample comes. 
In Exhibit  23, we give examples of nonparametric alternatives to the parametric, 
t-distributed tests concerning means.

13
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Exhibit 23   Nonparametric Alternatives to Parametric Tests Concerning 
Means

Parametric Nonparametric

Tests concerning a single mean t-distributed test 
z-distributed test

Wilcoxon signed- rank test

Tests concerning differences 
between means

t-distributed test Mann–Whitney U test 
(Wilcoxon rank sum test)

Tests concerning mean differ-
ences (paired comparisons tests)

t-distributed test Wilcoxon signed- rank test 
Sign test

13.1 Uses of Nonparametric Tests
We primarily use nonparametric procedures in four situations: (1) when the data we 
use do not meet distributional assumptions, (2) when there are outliers, (3) when 
the data are given in ranks or use an ordinal scale, or (4) when the hypotheses we are 
addressing do not concern a parameter.

The first situation occurs when the data available for analysis suggest that the 
distributional assumptions of the parametric test are not satisfied. For example, we 
may want to test a hypothesis concerning the mean of a population but believe that 
neither t- nor z-distributed tests are appropriate because the sample is small and may 
come from a markedly non- normally distributed population. In that case, we may use 
a nonparametric test. The nonparametric test will frequently involve the conversion 
of observations (or a function of observations) into ranks according to magnitude, 
and sometimes it will involve working with only “greater than” or “less than” relation-
ships (using the + and − signs to denote those relationships). Characteristically, one 
must refer to specialized statistical tables to determine the rejection points of the 
test statistic, at least for small samples. Such tests, then, typically interpret the null 
hypothesis as a hypothesis about ranks or signs.

Second, whereas the underlying distribution of the population may be normal, 
there may be extreme values or outliers that influence the parametric statistics but 
not the nonparametric statistics. For example, we may want to use a nonparametric 
test of the median, in the case of outliers, instead of a test of the mean.

Third, we may have a sample in which observations are ranked. In those cases, we 
also use nonparametric tests because parametric tests generally require a stronger 
measurement scale than ranks. For example, if our data were the rankings of invest-
ment managers, we would use nonparametric procedures to test the hypotheses 
concerning those rankings.

A fourth situation in which we use nonparametric procedures occurs when our 
question does not concern a parameter. For example, if the question concerns whether 
a sample is random or not, we use the appropriate nonparametric test (a “runs test”). 
The nonparametric runs test is used to test whether stock price changes can be used 
to forecast future stock price changes—in other words, a test of the random- walk 
theory. Another type of question that nonparametric methods can address is whether 
a sample came from a population following a particular probability distribution.

13.2 Nonparametric Inference: Summary
Nonparametric statistical procedures extend the reach of inference because they make 
few assumptions, can be used on ranked data, and may address questions unrelated 
to parameters. Quite frequently, nonparametric tests are reported alongside para-
metric tests; the user can then assess how sensitive the statistical conclusion is to 
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the assumptions underlying the parametric test. However, if the assumptions of the 
parametric test are met, the parametric test (where available) is generally preferred 
over the nonparametric test because the parametric test may have more power—that 
is, a greater ability to reject a false null hypothesis.

EXAMPLE 15  

The Use of Nonparametric Tests
A nonparametric test is most appropriate when the:

A data consist of ranked values.
B validity of the test depends on many assumptions.
C sample sizes are large but are drawn from a population that may be 

non- normal.

Solution
A is correct. When the samples consist of ranked values, parametric tests are 
not appropriate. In such cases, nonparametric tests are most appropriate.

TESTS CONCERNING CORRELATION

 l. explain parametric and nonparametric tests of the hypothesis that the popula-
tion correlation coefficient equals zero, and determine whether the hypothesis 
is rejected at a given level of significance

In many contexts in investments, we want to assess the strength of the linear rela-
tionship between two variables; that is, we want to evaluate the correlation between 
them. A significance test of a correlation coefficient allows us to assess whether the 
relationship between two random variables is the result of chance. If we decide that 
the relationship does not result from chance, then we are inclined to use this infor-
mation in modeling or forecasting.

If the correlation between two variables is zero, we conclude that there is no linear 
relation between the two variables. We use a test of significance to assess whether the 
correlation is different from zero. After we estimate a correlation coefficient, we need 
to ask whether the estimated correlation is significantly different from zero.

A correlation may be positive (that is, the two variables tend to move in the same 
direction at the same time) or negative (that is, the two variables tend to move in dif-
ferent directions at the same time). The correlation coefficient is a number between 
−1 and +1, where −1 denotes a perfect negative or inverse, straight- line relationship 
between the two variables; +1 denotes a perfect positive, straight- line relationship; 
and 0 represents the absence of any straight- line relationship (that is, no correlation).

The most common hypotheses concerning correlation occur when comparing the 
population correlation coefficient with zero because we are often asking whether there 
is a relationship, which implies a null of the correlation coefficient equal to zero (that 
is, no relationship). Hypotheses concerning the population correlation coefficient may 
be two or one sided, as we have seen in other tests. Let ρ represent the population 
correlation coefficient. The possible hypotheses are as follows:

Two sided: H0: ρ = 0 versus Ha: ρ ≠ 0
One sided (right side): H0: ρ ≤ 0 versus Ha: ρ > 0

14
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One sided (left side): H0: ρ ≥ 0 versus Ha: ρ < 0

We use the sample correlation to test these hypotheses on the population correlation.

14.1 Parametric Test of a Correlation
The parametric pairwise correlation coefficient is often referred to as the Pearson 
correlation, the bivariate correlation, or simply the correlation. Our focus is on 
the testing of the correlation and not the actual calculation of this statistic, but it 
helps distinguish this correlation from the nonparametric correlation if we look at 
the formula for the sample correlation. Consider two variables, X and Y. The sample 
correlation, rXY, is

r s
s sXY

XY

X Y
= ,

where sXY is the sample covariance between the X and Y variables, sX is the standard 
deviation of the X variable, and sY is the standard deviation of the Y variable. We often 
drop the subscript to represent the correlation as simply r.

Therefore, you can see from this formula that each observation is compared with 
its respective variable mean and that, because of the covariance, it matters how much 
each observation differs from its respective variable mean. Note that the covariance 
drives the sign of the correlation.

If the two variables are normally distributed, we can test to determine whether 
the null hypothesis (H0: ρ = 0) should be rejected using the sample correlation, r. The 
formula for the t-test is

t r n

r
�

�

�

2

1 2
.

This test statistic is t-distributed with n − 2 degrees of freedom. One practical obser-
vation concerning Equation 10 is that the magnitude of r needed to reject the null 
hypothesis decreases as sample size n increases, for two reasons. First, as n increases, 
the number of degrees of freedom increases and the absolute value of the critical value 
of the t-statistic decreases. Second, the absolute value of the numerator increases with 
larger n, resulting in a larger magnitude of the calculated t-statistic. For example, with 
sample size n = 12, r = 0.35 results in a t-statistic of 1.182, which is not different from 
zero at the 0.05 level (tα/2 = ±2.228). With a sample size of n = 32, the same sample 
correlation, r = 0.35, yields a t-statistic of 2.046, which is just significant at the 0.05 
level (t α/2 = ±2.042).

Another way to make this point is that when sampling from the same population, 
a false null hypothesis is more likely to be rejected (that is, the power of the test 
increases) as we increase the sample size, all else equal, because a higher number of 
observations increases the numerator of the test statistic. We show this in Exhibit 24 
for three different sample correlation coefficients, with the corresponding calculated 
t-statistics and significance at the 5% level for a two- sided alternative hypothesis. As 
the sample size increases, significance is more likely to be indicated, but the rate of 
achieving this significance depends on the sample correlation coefficient; the higher 
the sample correlation, the faster significance is achieved when increasing the sam-
ple size. As the sample sizes increase as ever- larger datasets are examined, the null 
hypothesis is almost always rejected and other tools of data analysis must be applied.

(10)
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Exhibit 24   Calculated Test Statistics for Different Sample Sizes and Sample 
Correlations with a 5% Level of Significance

Calculated t-Statistic

88

66
77

55
44
33

11
22

00

33 1212 2121 3030 3939 4848 5757 6666 7575 8484 9393

Sample Size

t-Statistic for Correlation = 0.2

t-Statistic for Correlation = 0.4

t-Statistic for Correlation = 0.6

Significant Correlation = 0.2

Significant Correlation = 0.4

Significant Correlation = 0.6

EXAMPLE 16  

Examining the Relationship between Returns on 
Investment One and Investment Two
An analyst is examining the annual returns for Investment One and Investment 
Two, as displayed in Exhibit 1. Although this time series plot provides some 
useful information, the analyst is most interested in quantifying how the returns 
of these two series are related, so she calculates the correlation coefficient, equal 
to 0.43051, between these series.

Is there a significant positive correlation between these two return series if 
she uses a 1% level of significance?

Solution

Step 1 State the hypotheses. H Ha0 0 0: :� � ��  versus  
Step 2 Identify the appropriate test statistic.

t r n

r
�

�

�

2

1 2

Step 3 Specify the level of significance. 1%
Step 4 State the decision rule With 33 − 2 = 31 degrees of freedom and a one- sided test with a 

1% level of significance, the critical value is 2.45282. 
We reject the null hypothesis if the calculated t-statistic is greater 
than 2.45282.

Step 5 Calculate the test statistic.
t � �

�
�

0 43051 33 2
1 0 18534

2 65568.
.

.

Step 6 Make a decision Reject the null hypothesis since the calculated t-statistic is greater 
than 2.45282. There is sufficient evidence to reject the H0 in favor 
of Ha, that the correlation between the annual returns of these 
two investments is positive.

© CFA Institute. For candidate use only. Not for distribution.



Tests Concerning Correlation 401

14.2 Tests Concerning Correlation: The Spearman Rank 
Correlation Coefficient

 l. explain parametric and nonparametric tests of the hypothesis that the popula-
tion correlation coefficient equals zero, and determine whether the hypothesis 
is rejected at a given level of significance

When we believe that the population under consideration meaningfully departs from 
normality, we can use a test based on the Spearman rank correlation coefficient, 
rS. The Spearman rank correlation coefficient is essentially equivalent to the usual 
correlation coefficient but is calculated on the ranks of the two variables (say, X and 
Y) within their respective samples. The calculation of rS requires the following steps:

1 Rank the observations on X from largest to smallest. Assign the number 1 to 
the observation with the largest value, the number 2 to the observation with 
second largest value, and so on. In case of ties, assign to each tied observation 
the average of the ranks that they jointly occupy. For example, if the third and 
fourth largest values are tied, we assign both observations the rank of 3.5 (the 
average of 3 and 4). Perform the same procedure for the observations on Y.

2 Calculate the difference, di, between the ranks for each pair of observations on 
X and Y, and then calculate di

2 (the squared difference in ranks).
3 With n as the sample size, the Spearman rank correlation is given by

r
d

n n
s

ii
n

� �
�
��1

6

1

2
1

2( )
.

Suppose an analyst is examining the relationship between returns for two invest-
ment funds, A and B, of similar risk over 35 years. She is concerned that the assumptions 
for the parametric correlation may not be met, so she decides to test Spearman rank 
correlations. Her hypotheses are H0: rS = 0 and Ha: rS ≠ 0. She gathers the returns, 
ranks the returns for each fund, and calculates the difference in ranks and the squared 
differences. A partial table is provided in Exhibit 25.

Exhibit 25   Differences and Squared Differences in Ranks for Fund A and 
Fund B over 35 Years

Year Fund A Fund B Rank of A Rank of B d d2

1 2.453 1.382 27 31 −4 16
2 3.017 3.110 24 24 0 0
3 4.495 6.587 19 7 12 144
4 3.627 3.300 23 23 0 0
. 
. 
.
30 2.269 0.025 28 35 −7 49
31 6.354 4.428 10 19 −9 81
32 6.793 4.165 8 20 −12 144
33 7.300 7.623 5 5 0 0
34 6.266 4.527 11 18 −7 49

(11)

(continued)
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Year Fund A Fund B Rank of A Rank of B d d2

35 1.257 4.704 34 16 18 324

Sum = 2,202

The Spearman rank correlation is:

r
d

n n
s

ii
n

� �
�

� �
�

���1
6

1
1 6 2 202

35 1 225 1
0 6916

2
1

2( )
( , )

( , )
. .

The test of hypothesis for the Spearman rank correlation depends on whether the 
sample is small or large (n > 30). For small samples, the researcher requires a spe-
cialized table of critical values, but for large samples, we can conduct a t-test using 
the test statistic in Equation 10, which is t-distributed with n − 2 degrees of freedom.

In this example, for a two- tailed test with a 5% significance level, the critical values 
for n − 2 = 35 − 2 = 33 degrees of freedom are ±2.0345. For the sample information 
in Exhibit 24, the calculated test statistic is

t �
�

�
0 6916 33

1 0 6916
5 5005

2

.

( . )
. .

Accordingly, we reject the null hypothesis (H0: rS = 0), concluding that there is suf-
ficient evidence to indicate that the correlation between the returns of Fund A and 
Fund B is different from zero.

EXAMPLE 17  

Testing the Exchange Rate Correlation
An analyst gathers exchange rate data for five currencies relative to the US dol-
lar. Upon inspection of the distribution of these exchange rates, she observes 
a departure from normality, especially with negative skewness for four of the 
series and positive skewness for the fifth. Therefore, she decides to examine the 
relationships among these currencies using Spearman rank correlations. She cal-
culates these correlations between the currencies over 180 days, which are shown 
in the correlogram in Exhibit 26. In this correlogram, the lower triangle reports 
the pairwise correlations and the upper triangle provides a visualization of the 
magnitude of the correlations, with larger circles indicating larger absolute value 
of the correlations and darker circles indicating correlations that are negative.

Exhibit 25   (Continued)
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Exhibit 26   Spearman Rank Correlations between Exchanges Rates 
Relative to the US Dollar
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For any of these pairwise Spearman rank correlations, can we reject the 
null hypothesis of no correlation (H0: rS = 0 and Ha: rS ≠ 0) at the 5% level of 
significance?

Solution
The critical t-values for 2.5% in each tail of the distribution are ±1.97338.

There are five exchange rates, so there are 5C2, or 10, unique correlation 
pairs. Therefore, we need to calculate 10 t-statistics. For example, the correlation 
between EUR/USD and AUD/USD is 0.6079. The calculated t-statistic is
0 6079 180 2

1 0 6079

8 11040
0 79401

10 2144
2

.

.

.

.
.�

�
� � . Repeating this t-statistic calculation for 

each pair of exchange rates yields the test statistics shown in Exhibit 27.

Exhibit 27   Calculated Test Statistics for Test of Spearman Rank 
Correlations

AUD/USD CAD/USD EUR/USD GBP/USD

CAD/USD 29.7409

EUR/USD 10.2144 9.1455

GBP/USD 12.4277 13.2513 7.4773
JPY/USD −2.6851 −3.6726 5.2985 −2.7887

The analyst should reject all 10 null hypotheses, because the calculated t-statistics 
for all exchange rate pairs fall outside the bounds of the two critical values. She 
should conclude that all the exchange rate pair correlations are different from 
zero at the 5% level.
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TEST OF INDEPENDENCE USING CONTINGENCY 
TABLE DATA

m explain tests of independence based on contingency table data

When faced with categorical or discrete data, we cannot use the methods that we 
have discussed up to this point to test whether the classifications of such data are 
independent. Suppose we observe the following frequency table of 1,594 exchange- 
traded funds (ETFs) based on two classifications: size (that is, market capitalization) 
and investment type (value, growth, or blend), as shown in Exhibit 28. The classifi-
cation of the investment type is discrete, so we cannot use correlation to assess the 
relationship between size and investment type.

Exhibit 28   Size and Investment Type Classifications of 1,594 ETFs

Size Based on Market Capitalization

Investment Type Small Medium Large Total

Value 50 110 343 503
Growth 42 122 202 366
Blend 56 149 520 725
Total 148 381 1,065 1,594

This table is referred to as a contingency table or a two- way table (because there 
are two classifications, or classes—size and investment type).

If we want to test whether there is a relationship between the size and investment 
type, we can perform a test of independence using a nonparametric test statistic that 
is chi- square distributed:

�2
2

1�
�� �

��
O E

E
ij ij

ij
i
m ,

where

 m = the number of cells in the table, which is the number of groups in the first 
class multiplied by the number of groups in the second class

 Oij = the number of observations in each cell of row i and column j (i.e., 
observed frequency)

 Eij = the expected number of observations in each cell of row i and column j, 
assuming independence (i.e., expected frequency)

This test statistic has (r − 1)(c − 1) degrees of freedom, where r is the number of rows 
and c is the number of columns.

In Exhibit 28, size class has three groups (small, medium, and large) and invest-
ment type class has three groups (value, growth, and blend), so m is 9 (= 3 × 3). The 
number of ETFs in each cell (Oij), the observed frequency, is given, so to calculate 
the chi- square test statistic, we need to estimate Eij, the expected frequency, which 
is the number of ETFs we would expect to be in each cell if size and investment type 
are completely independent. The expected number of ETFs (Eij ) is calculated using

E i j
ij �

�( ) ( ).Total row Total column 
Overall total

15

(12)

(13)
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Consider one combination of size and investment type, small- cap value:

Eij �
�

�
503 148 46 703

1,594
. .

We repeat this calculation for each combination of size and investment type (i.e., 
m = 9 pairs) to arrive at the expected frequencies, shown in Panel A of Exhibit 29.

Next, we calculate 
O E

E
ij ij

ij

�� �2
, the squared difference between observed and 

expected frequencies scaled by expected frequency, for each cell as shown in Panel B 

of Exhibit 29. Finally, by summing the values of 
O E

E
ij ij

ij

�� �2
 for each of the m cells, 

we calculate the chi- square statistic as 32.08025.

Exhibit 29   Inputs to Chi- Square Test Statistic Calculation for 1,594 ETFs 
Assuming Independence of Size and Investment Type

A. Expected Frequency of ETFs by Size and Investment Type

Size Based on Market Capitalization

Investment Type Small Medium Large

Value 46.703 120.228 336.070
Growth 33.982 87.482 244.536
Blend 67.315 173.290 484.395
Total 148.000 381.000 1,065.000

B. Scaled Squared Deviation for Each Combination of Size and Investment Type

Size Based on Market Capitalization

Investment Type Small Medium Large

Value 0.233 0.870 0.143
Growth 1.892 13.620 7.399
Blend 1.902 3.405 2.617

In our ETF example, we test the null hypothesis of independence between the two 
classes (i.e., no relationship between size and investment type) versus the alternative 
hypothesis of dependence (i.e., a relationship between size and investment type) using 
a 5% level of significance, as shown in Exhibit 30. If, on the one hand, the observed 
values are equal to the expected values, the calculated test statistic would be zero. If, 
on the other hand, there are differences between the observed and expected values, 
these differences are squared, so the calculated chi- square statistic will be positive. 
Therefore, for the test of independence using a contingency table, there is only one 
rejection region, on the right side.
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Exhibit 30   Test of Independence of Size and Investment Type for 1,594 ETFs

Step 1 State the hypotheses. H0: ETF size and investment type are not related, so these classifica-
tions are independent;  
Ha : ETF size and investment type are related, so these classifications 
are not independent. 

Step 2 Identify the appropriate test statistic.

�2
2

1
�

�� �
�
�

O E

E
ij ij

iji

m

Step 3 Specify the level of significance. 5%
Step 4 State the decision rule. With (3 − 1) × (3 − 1) = 4 degrees of freedom and a one- sided test 

with a 5% level of significance, the critical value is 9.4877.
We reject the null hypothesis if the calculated χ2 statistic is greater 
than 9.4877.
Excel CHISQ.INV(0.95,4)
R qchisq(.95,4)
Python from scipy.stats import chi2

chi2.ppf(.95,4)

Step 5 Calculate the test statistic. χ2 = 32.08025
Step 6 Make a decision. Reject the null hypothesis of independence because the calculated 

χ2 test statistic is greater than 9.4877. There is sufficient evidence 
to conclude that ETF size and investment type are related (i.e., not 
independent).

We can visualize the contingency table in a graphic referred to as a mosaic. In a 
mosaic, a grid reflects the comparison between the observed and expected frequencies. 
Consider Exhibit 31, which represents the ETF contingency table.

Exhibit 31   Mosaic of the ETF Contingency Table
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The width of the rectangles in Exhibit 31 reflect the proportion of ETFs that are 
small, medium, and large, whereas the height reflects the proportion that are value, 
growth, and blend. The darker shading indicates whether there are more observations 
than expected under the null hypothesis of independence, whereas the lighter shading 
indicates that there are fewer observations than expected, with “more” and “fewer” 
determined by reference to the standardized residual boxes. The standardized residual, 
also referred to as a Pearson residual, is

Standardized residual �
�O E

E
ij ij

ij
.

The interpretation for this ETF example is that there are more medium- size growth 
ETFs (standardized residual of 3.69) and fewer large- size growth ETFs (standardized 
residual of −2.72) than would be expected if size and investment type were independent.

EXAMPLE 18  

Using Contingency Tables to Test for Independence
Consider the contingency table in Exhibit  32, which classifies 500 randomly 
selected companies on the basis of two environmental, social, and governance 
(ESG) rating dimensions: environmental rating and governance rating.

Exhibit 32   Classification of 500 Randomly Selected Companies Based 
on Environmental and Governance Ratings

Governance Rating

Environmental Rating Progressive Average Poor Total

Progressive 35 40 5 80
Average 80 130 50 260
Poor 40 60 60 160
Total 155 230 115 500

1 What are the expected frequencies for these two ESG rating dimensions if 
these categories are independent?

2 Using a 5% level of significance, determine whether these two ESG rating 
dimensions are independent of one another.

Solution to 1
The expected frequencies based on independence of the governance rating 
and the environmental rating are shown in Panel A of Exhibit 33. For example, 
using Equation 12, the expected frequency for the combination of progressive 
governance and progressive environmental ratings is

Eij �
�

�
155 80

500
24 80. .

(14)
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Exhibit 33   Inputs to Chi- Square Test Statistic Calculation Assuming 
Independence of Environmental and Governance Ratings

A. Expected Frequencies of Environmental and Governance Ratings Assuming 
Independence

Governance Rating

Environmental Rating Progressive Average Poor

Progressive 24.8 36.8 18.4
Average 80.6 119.6 59.8
Poor 49.6 73.6 36.8

B. Scaled Squared Deviation for Each Combination of Environmental and 
Governance Ratings

Governance Rating

Environmental Rating Progressive Average Poor

Progressive 4.195 0.278 9.759
Average 0.004 0.904 1.606
Poor 1.858 2.513 14.626

Solution to 2

Step 1 State the hypotheses. H0: Governance and environmental ratings are not related, so 
these ratings are independent; 
Ha: Governance and environmental ratings are related, so these 
ratings are not independent. 

Step 2 Identify the appropriate test 
statistic.

     

�2
2

1
�

�� �
�
�

O E

E
ij ij

iji

m

Step 3 Specify the level of significance. 5%
Step 4 State the decision rule. With (3 − 1) × (3 − 1) = 4 degrees of freedom and a one- sided test 

with a 5% level of significance, the critical value is 9.487729.
We reject the null hypothesis if the calculated χ2 statistic is greater 
than 9.487729.
Excel CHISQ.INV(0.95,4)
R qchisq(.95,4)
Python from scipy.stats import chi2
           chi2.ppf(.95,4)

Step 5 Calculate the test statistic. χ2 = 35.74415
To calculate the test statistic, we first calculate the squared 
difference between observed and expected frequencies scaled 
by expected frequency for each cell, as shown in Panel B of 
Exhibit 33. Then, summing the values in each of the m cells (see 
Equation 11), we calculate the chi- square statistic as 35.74415.

Step 6 Make a decision. Reject the null hypothesis because the calculated χ2 test statistic is 
greater than 9.487729. There is sufficient evidence to indicate that 
the environmental and governance ratings are related, so they are 
not independent.
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SUMMARY
In this reading, we have presented the concepts and methods of statistical inference 
and hypothesis testing.

■■ A hypothesis is a statement about one or more populations.
■■ The steps in testing a hypothesis are as follows:

1 State the hypotheses.
2 Identify the appropriate test statistic and its probability distribution.
3 Specify the significance level.
4 State the decision rule.
5 Collect the data and calculate the test statistic.
6 Make a decision.

■■ We state two hypotheses: The null hypothesis is the hypothesis to be tested; 
the alternative hypothesis is the hypothesis accepted if the null hypothesis is 
rejected.

■■ There are three ways to formulate hypotheses. Let θ indicate the population 
parameters:
1 Two- sided alternative: H0: θ = θ0 versus Ha: θ ≠ θ0
2 One- sided alternative (right side): H0: θ ≤ θ0 versus Ha: θ > θ0
3 One- sided alternative (left side): H0: θ ≥ θ0 versus Ha: θ < θ0
where θ0 is a hypothesized value of the population parameter and θ is the true 
value of the population parameter.

■■ When we have a “suspected” or “hoped for” condition for which we want to 
find supportive evidence, we frequently set up that condition as the alternative 
hypothesis and use a one- sided test. However, the researcher may select a “not 
equal to” alternative hypothesis and conduct a two- sided test to emphasize a 
neutral attitude.

■■ A test statistic is a quantity, calculated using a sample, whose value is the basis 
for deciding whether to reject or not reject the null hypothesis. We compare the 
computed value of the test statistic to a critical value for the same test statistic 
to decide whether to reject or not reject the null hypothesis.

■■ In reaching a statistical decision, we can make two possible errors: We may 
reject a true null hypothesis (a Type I error, or false positive), or we may fail to 
reject a false null hypothesis (a Type II error, or false negative).

■■ The level of significance of a test is the probability of a Type I error that we 
accept in conducting a hypothesis test. The standard approach to hypothesis 
testing involves specifying only a level of significance (that is, the probability of 
a Type I error). The complement of the level of significance is the confidence 
level.

■■ The power of a test is the probability of correctly rejecting the null (rejecting 
the null when it is false). The complement of the power of the test is the proba-
bility of a Type II error.

■■ A decision rule consists of determining the critical values with which to com-
pare the test statistic to decide whether to reject or not reject the null hypoth-
esis. When we reject the null hypothesis, the result is said to be statistically 
significant.

■■ The (1 − α) confidence interval represents the range of values of the test statistic 
for which the null hypothesis is not be rejected.
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■■ The statistical decision consists of rejecting or not rejecting the null hypothesis. 
The economic decision takes into consideration all economic issues pertinent to 
the decision.

■■ The p-value is the smallest level of significance at which the null hypothesis can 
be rejected. The smaller the p-value, the stronger the evidence against the null 
hypothesis and in favor of the alternative hypothesis. The p-value approach to 
hypothesis testing involves computing a p-value for the test statistic and allow-
ing the user of the research to interpret the implications for the null hypothesis.

■■ For hypothesis tests concerning the population mean of a normally distributed 
population with unknown variance, the theoretically correct test statistic is the 
t-statistic.

■■ When we want to test whether the observed difference between two means 
is statistically significant, we must first decide whether the samples are inde-
pendent or dependent (related). If the samples are independent, we conduct a 
test concerning differences between means. If the samples are dependent, we 
conduct a test of mean differences (paired comparisons test).

■■ When we conduct a test of the difference between two population means from 
normally distributed populations with unknown but equal variances, we use 
a t-test based on pooling the observations of the two samples to estimate the 
common but unknown variance. This test is based on an assumption of inde-
pendent samples.

■■ In tests concerning two means based on two samples that are not independent, 
we often can arrange the data in paired observations and conduct a test of mean 
differences (a paired comparisons test). When the samples are from normally 
distributed populations with unknown variances, the appropriate test statistic is 
t-distributed.

■■ In tests concerning the variance of a single normally distributed population, the 
test statistic is chi- square with n − 1 degrees of freedom, where n is sample size.

■■ For tests concerning differences between the variances of two normally distrib-
uted populations based on two random, independent samples, the appropri-
ate test statistic is based on an F-test (the ratio of the sample variances). The 
degrees of freedom for this F-test are n1 − 1 and n2 − 1, where n1 corresponds 
to the number of observations in the calculation of the numerator and n2 is the 
number of observations in the calculation of the denominator of the F-statistic.

■■ A parametric test is a hypothesis test concerning a population parameter or 
a hypothesis test based on specific distributional assumptions. In contrast, a 
nonparametric test either is not concerned with a parameter or makes minimal 
assumptions about the population from which the sample comes.

■■ A nonparametric test is primarily used when data do not meet distributional 
assumptions, when there are outliers, when data are given in ranks, or when the 
hypothesis we are addressing does not concern a parameter.

■■ In tests concerning correlation, we use a t-statistic to test whether a population 
correlation coefficient is different from zero. If we have n observations for two 
variables, this test statistic has a t-distribution with n − 2 degrees of freedom.

■■ The Spearman rank correlation coefficient is calculated on the ranks of two 
variables within their respective samples.

■■ A chi- square distributed test statistic is used to test for independence of two 
categorical variables. This nonparametric test compares actual frequencies with 
those expected on the basis of independence. This test statistic has degrees of 
freedom of (r − 1)(c − 2), where r is the number of categories for the first vari-
able and c is the number of categories of the second variable.
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PRACTICE PROBLEMS

1 Which of the following statements about hypothesis testing is correct? 
A The null hypothesis is the condition a researcher hopes to support.
B The alternative hypothesis is the proposition considered true without con-

clusive evidence to the contrary.
C The alternative hypothesis exhausts all potential parameter values not 

accounted for by the null hypothesis.
2 Identify the appropriate test statistic or statistics for conducting the following 

hypothesis tests. (Clearly identify the test statistic and, if applicable, the number 
of degrees of freedom. For example, “We conduct the test using an x-statistic 
with y degrees of freedom.”)
A H0: μ = 0 versus Ha: μ ≠ 0, where μ is the mean of a normally distributed 

population with unknown variance. The test is based on a sample of 15 
observations.

B H0: μ = 5 versus Ha: μ ≠ 5, where μ is the mean of a normally distributed 
population with unknown variance. The test is based on a sample of 40 
observations.

C H0: μ ≤ 0 versus Ha: μ > 0, where μ is the mean of a normally distributed 
population with known variance σ2. The sample size is 45.

D H0: σ2 = 200 versus Ha: σ2 ≠ 200, where σ2 is the variance of a normally 
distributed population. The sample size is 50.

E H Ha0 1
2

2
2

1
2

2
2: : ,� � � �� � versus  whereσ1

2 is the variance of one normally 

distributed population andσ2
2  is the variance of a second normally distrib-

uted population. The test is based on two independent samples, with the 
first sample of size 30 and the second sample of size 40.

F H0: μ1 − μ2 = 0 versus Ha: μ1 − μ2 ≠ 0, where the samples are drawn from 
normally distributed populations with unknown but assumed equal vari-
ances. The observations in the two samples (of size 25 and 30, respectively) 
are independent.

3 For each of the following hypothesis tests concerning the population mean, μ, 
state the conclusion regarding the test of the hypotheses.
A H0: μ = 10 versus Ha: μ ≠ 10, with a calculated t-statistic of 2.05 and critical 

t-values of ±1.984.
B H0: μ ≤ 10 versus Ha: μ > 10, with a calculated t-statistic of 2.35 and a criti-

cal t-value of +1.679
C H0: μ = 10 versus Ha: μ ≠ 10, with a calculated t-statistic of 2.05, a p-value of 

4.6352%, and a level of significance of 5%.
D H0: μ ≤ 10 versus Ha: μ > 10, with a 2% level of significance and a calculated 

test statistic with a p-value of 3%. 
4 For each of the following hypothesis tests concerning the population mean, 

state the conclusion.
A H0: σ2 = 0.10 versus Ha: σ2 ≠ 0.10, with a calculated chi- square test statistic 

of 45.8 and critical chi- square values of 42.950 and 86.830.
B H0: σ2 = 0.10 versus Ha: σ2 ≠ 0.10, with a 5% level of significance and a 

p-value for this calculated chi- square test statistic of 4.463%.
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C H0: σ1
2 = σ2

2 versus Ha: σ1
2 ≠ σ2

2, with a calculated F-statistic of 2.3. With 
40 and 30 degrees of freedom, the critical F-values are 0.498 and 1.943.

D H0: σ2 ≤ 10 versus Ha: μσ2 > 10, with a calculated test statistic of 32 and a 
critical chi- square value of 26.296.

5 Willco is a manufacturer in a mature cyclical industry. During the most recent 
industry cycle, its net income averaged $30 million per year with a standard 
deviation of $10 million (n = 6 observations). Management claims that Willco’s 
performance during the most recent cycle results from new approaches and 
that Willco’s profitability will exceed the $24 million per year observed in prior 
cycles.
A With μ as the population value of mean annual net income, formulate null 

and alternative hypotheses consistent with testing Willco management’s 
claim.

B Assuming that Willco’s net income is at least approximately normally dis-
tributed, identify the appropriate test statistic and calculate the degrees of 
freedom.

C Based on critical value of 2.015, determine whether to reject the null 
hypothesis.

The following information relates to Questions 
6–7

Performance in Forecasting Quarterly Earnings per Share

Number of 
Forecasts

Mean Forecast Error 
(Predicted − Actual)

Standard Deviation of 
Forecast Errors

Analyst A 10 0.05 0.10
Analyst B 15 0.02 0.09

Critical t-values:

Area in the Right- Side Rejection Area 

Degrees of Freedom p = 0.05 p = 0.025

8 1.860 2.306
9 1.833 2.262

10 1.812 2.228
11 1.796 2.201
12 1.782 2.179
13 1.771 2.160
14 1.761 2.145
15 1.753 2.131
16 1.746 2.120
17 1.740 2.110
18 1.734 2.101
19 1.729 2.093
20 1.725 2.086
21 1.721 2.080

(continued)
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Area in the Right- Side Rejection Area 

Degrees of Freedom p = 0.05 p = 0.025

22 1.717 2.074
23 1.714 2.069
24 1.711 2.064
25 1.708 2.060
26 1.706 2.056
27 1.703 2.052

6 Investment analysts often use earnings per share (EPS) forecasts. One test of 
forecasting quality is the zero- mean test, which states that optimal forecasts 
should have a mean forecasting error of zero. The forecasting error is the 
difference between the predicted value of a variable and the actual value of the 
variable.

 You have collected data (shown in the previous table) for two analysts who 
cover two different industries: Analyst A covers the telecom industry; Analyst B 
covers automotive parts and suppliers.
A With μ as the population mean forecasting error, formulate null and alterna-

tive hypotheses for a zero- mean test of forecasting quality.
B For Analyst A, determine whether to reject the null at the 0.05 level of 

significance.
C For Analyst B, determine whether to reject the null at the 0.05 level of 

significance.
7 Reviewing the EPS forecasting performance data for Analysts A and B, you 

want to investigate whether the larger average forecast errors of Analyst A 
relative to Analyst B are due to chance or to a higher underlying mean value 
for Analyst A. Assume that the forecast errors of both analysts are normally dis-
tributed and that the samples are independent.
A Formulate null and alternative hypotheses consistent with determining 

whether the population mean value of Analyst A’s forecast errors (μ1) are 
larger than Analyst B’s (μ2).

B Identify the test statistic for conducting a test of the null hypothesis formu-
lated in Part A.

C Identify the rejection point or points for the hypotheses tested in Part A at 
the 0.05 level of significance.

D Determine whether to reject the null hypothesis at the 0.05 level of 
significance.

8 The following table gives data on the monthly returns on the S&P 500 Index 
and small- cap stocks for a 40- year period and provides statistics relating to 
their mean differences. Further, the entire sample period is split into two subpe-
riods of 20 years each, and the return data for these subperiods is also given in 
the table.
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Measure

S&P 500 
Return 

(%)

Small- Cap 
Stock Return 

(%)

Differences 
(S&P 500 − Small- Cap 

Stock)

Entire sample period, 480 months
Mean 1.0542 1.3117 −0.258
Standard deviation 4.2185 5.9570 3.752
First subperiod, 240 months
Mean 0.6345 1.2741 −0.640
Standard deviation 4.0807 6.5829 4.096
Second subperiod, 240 months
Mean 1.4739 1.3492 0.125
Standard deviation 4.3197 5.2709 3.339

 Use a significance level of 0.05 and assume that mean differences are approxi-
mately normally distributed.
A Formulate null and alternative hypotheses consistent with testing whether 

any difference exists between the mean returns on the S&P 500 and small- 
cap stocks.

B Determine whether to reject the null hypothesis for the entire sample period 
if the critical values are ±1.96.

C Determine whether to reject the null hypothesis for the first subperiod if the 
critical values are ±1.96.

D Determine whether to reject the null hypothesis for the second subperiod if 
the critical values are ±1.96.

9 During a 10- year period, the standard deviation of annual returns on a portfolio 
you are analyzing was 15% a year. You want to see whether this record is suffi-
cient evidence to support the conclusion that the portfolio’s underlying variance 
of return was less than 400, the return variance of the portfolio’s benchmark.
A Formulate null and alternative hypotheses consistent with your objective.
B Identify the test statistic for conducting a test of the hypotheses in Part A, 

and calculate the degrees of freedom.
C Determine whether the null hypothesis is rejected or not rejected at the 0.05 

level of significance using a critical value of 3.325.
10 You are investigating whether the population variance of returns on an index 

changed subsequent to a market disruption. You gather the following data for 
120 months of returns before the disruption and for 120 months of returns after 
the disruption. You have specified a 0.05 level of significance.

Time Period n

Mean Monthly 
Return 

(%) Variance of Returns

Before disruption 120 1.416 22.367
After disruption 120 1.436 15.795

A Formulate null and alternative hypotheses consistent with the research goal.
B Identify the test statistic for conducting a test of the hypotheses in Part A, 

and calculate the degrees of freedom.
C Determine whether to reject the null hypothesis at the 0.05 level of signifi-

cance if the critical values are 0.6969 and 1.4349. 
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11 The following table shows the sample correlations between the monthly returns 
for four different mutual funds and the S&P 500. The correlations are based on 
36 monthly observations. The funds are as follows:

Fund 1 Large- cap fund
Fund 2 Mid- cap fund
Fund 3 Large- cap value fund
Fund 4 Emerging market fund
S&P 500 US domestic stock index

Fund 1 Fund 2 Fund 3 Fund 4 S&P 500

Fund 1 1        
Fund 2 0.9231 1      
Fund 3 0.4771 0.4156 1    
Fund 4 0.7111 0.7238 0.3102 1  
S&P 500 0.8277 0.8223 0.5791 0.7515 1

 Test the null hypothesis that each of these correlations, individually, is equal 
to zero against the alternative hypothesis that it is not equal to zero. Use a 5% 
significance level and critical t-values of ±2.032.

12 In the step “stating a decision rule” in testing a hypothesis, which of the follow-
ing elements must be specified?
A Critical value
B Power of a test
C Value of a test statistic

13 Which of the following statements is correct with respect to the null 
hypothesis?
A It can be stated as “not equal to” provided the alternative hypothesis is 

stated as “equal to.”
B Along with the alternative hypothesis, it considers all possible values of the 

population parameter.
C In a two- tailed test, it is rejected when evidence supports equality between 

the hypothesized value and the population parameter.
14 An analyst is examining a large sample with an unknown population variance. 

Which of the following is the most appropriate test to test the hypothesis that 
the historical average return on an index is less than or equal to 6%?
A One- sided t-test
B Two- sided t-test
C One- sided chi- square test

15 A hypothesis test for a normally distributed population at a 0.05 significance 
level implies a:
A 95% probability of rejecting a true null hypothesis.
B 95% probability of a Type I error for a two- tailed test.
C 5% critical value rejection region in a tail of the distribution for a one- tailed 

test. 
16 Which of the following statements regarding a one- tailed hypothesis test is 

correct?
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A The rejection region increases in size as the level of significance becomes 
smaller.

B A one- tailed test more strongly reflects the beliefs of the researcher than a 
two- tailed test.

C The absolute value of the rejection point is larger than that of a two- tailed 
test at the same level of significance.

17 The value of a test statistic is best described as the basis for deciding whether to:
A reject the null hypothesis.
B accept the null hypothesis.
C reject the alternative hypothesis.

18 Which of the following is a Type I error?
A Rejecting a true null hypothesis
B Rejecting a false null hypothesis
C Failing to reject a false null hypothesis

19 A Type II error is best described as:
A rejecting a true null hypothesis.
B failing to reject a false null hypothesis.
C failing to reject a false alternative hypothesis.

20 The level of significance of a hypothesis test is best used to:
A calculate the test statistic.
B define the test’s rejection points.
C specify the probability of a Type II error.

21 You are interested in whether excess risk- adjusted return (alpha) is correlated 
with mutual fund expense ratios for US large- cap growth funds. The following 
table presents the sample.

Mutual Fund Alpha Expense Ratio

1 −0.52 1.34
2 −0.13 0.40
3 −0.50 1.90
4 −1.01 1.50
5 −0.26 1.35
6 −0.89 0.50
7 −0.42 1.00
8 −0.23 1.50
9 −0.60 1.45

A Formulate null and alternative hypotheses consistent with the verbal 
description of the research goal.

B Identify and justify the test statistic for conducting a test of the hypotheses 
in Part A.

C Determine whether to reject the null hypothesis at the 0.05 level of signifi-
cance if the critical values are ±2.306.

22 All else equal, is specifying a smaller significance level in a hypothesis test likely 
to increase the probability of a:
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Type I error? Type II error?

A. No No

B. No Yes

C. Yes No

23 The probability of correctly rejecting the null hypothesis is the:
A p-value.
B power of a test.
C level of significance.

24 The power of a hypothesis test is:
A equivalent to the level of significance.
B the probability of not making a Type II error. 
C unchanged by increasing a small sample size.

25 When making a decision about investments involving a statistically significant 
result, the:
A economic result should be presumed to be meaningful.
B statistical result should take priority over economic considerations.
C economic logic for the future relevance of the result should be further 

explored.
26 An analyst tests the profitability of a trading strategy with the null hypothesis 

that the average abnormal return before trading costs equals zero. The calcu-
lated t-statistic is 2.802, with critical values of ±2.756 at significance level α 
= 0.01. After considering trading costs, the strategy’s return is near zero. The 
results are most likely:
A statistically but not economically significant.
B economically but not statistically significant.
C neither statistically nor economically significant.

27 Which of the following statements is correct with respect to the p-value?
A It is a less precise measure of test evidence than rejection points.
B It is the largest level of significance at which the null hypothesis is rejected.
C It can be compared directly with the level of significance in reaching test 

conclusions.
28 Which of the following represents a correct statement about the p-value?

A The p-value offers less precise information than does the rejection points 
approach.

B A larger p-value provides stronger evidence in support of the alternative 
hypothesis.

C A p-value less than the specified level of significance leads to rejection of the 
null hypothesis.

29 Which of the following statements on p-value is correct?
A The p-value indicates the probability of making a Type II error.
B The lower the p-value, the weaker the evidence for rejecting the H0.
C The p-value is the smallest level of significance at which H0 can be rejected.

30 The following table shows the significance level (α) and the p-value for two 
hypothesis tests. 
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α p-Value

Test 1 0.02 0.05
Test 2 0.05 0.02

 In which test should we reject the null hypothesis?
A Test 1 only
B Test 2 only
C Both Test 1 and Test 2

31 Which of the following tests of a hypothesis concerning the population mean is 
most appropriate?
A A z-test if the population variance is unknown and the sample is small
B A z-test if the population is normally distributed with a known variance
C A t-test if the population is non- normally distributed with unknown vari-

ance and a small sample
32 For a small sample from a normally distributed population with unknown vari-

ance, the most appropriate test statistic for the mean is the:
A z-statistic.
B t-statistic.
C χ2 statistic.

33 An investment consultant conducts two independent random samples of 
five- year performance data for US and European absolute return hedge funds. 
Noting a return advantage of 50 bps for US managers, the consultant decides 
to test whether the two means are different from one another at a 0.05 level of 
significance. The two populations are assumed to be normally distributed with 
unknown but equal variances. Results of the hypothesis test are contained in 
the following tables.

Sample Size
Mean Return 

(%)
Standard 
Deviation

US managers 50 4.7 5.4
European managers 50 4.2 4.8

Null and alternative hypotheses H0: μUS − μE = 0; Ha: μUS − μE ≠ 0
Calculated test statistic 0.4893
Critical value rejection points ±1.984

The mean return for US funds is μUS, and μE is the mean return for European funds.

 The results of the hypothesis test indicate that the:
A null hypothesis is not rejected. 
B alternative hypothesis is statistically confirmed.
C difference in mean returns is statistically different from zero. 

34 A pooled estimator is used when testing a hypothesis concerning the:
A equality of the variances of two normally distributed populations.
B difference between the means of two at least approximately normally dis-

tributed populations with unknown but assumed equal variances.
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C difference between the means of two at least approximately normally dis-
tributed populations with unknown and assumed unequal variances.

35 When evaluating mean differences between two dependent samples, the most 
appropriate test is a:
A z-test.
B chi- square test.
C paired comparisons test.

36 A chi- square test is most appropriate for tests concerning:
A a single variance.
B differences between two population means with variances assumed to be 

equal.
C differences between two population means with variances assumed to not 

be equal.
37 Which of the following should be used to test the difference between the vari-

ances of two normally distributed populations?
A t-test
B F-test
C Paired comparisons test

38 Jill Batten is analyzing how the returns on the stock of Stellar Energy Corp. are 
related with the previous month’s percentage change in the US Consumer Price 
Index for Energy (CPIENG). Based on 248 observations, she has computed the 
sample correlation between the Stellar and CPIENG variables to be −0.1452. 
She also wants to determine whether the sample correlation is significantly 
different from zero. The critical value for the test statistic at the 0.05 level of 
significance is approximately 1.96. Batten should conclude that the statistical 
relationship between Stellar and CPIENG is:
A significant, because the calculated test statistic is outside the bounds of the 

critical values for the test statistic.
B significant, because the calculated test statistic has a lower absolute value 

than the critical value for the test statistic.
C insignificant, because the calculated test statistic is outside the bounds of 

the critical values for the test statistic.
39 In which of the following situations would a nonparametric test of a hypothesis 

most likely be used?
A The sample data are ranked according to magnitude.
B The sample data come from a normally distributed population.
C The test validity depends on many assumptions about the nature of the 

population.
40 An analyst is examining the monthly returns for two funds over one year. Both 

funds’ returns are non- normally distributed. To test whether the mean return of 
one fund is greater than the mean return of the other fund, the analyst can use:
A a parametric test only.
B a nonparametric test only.
C both parametric and nonparametric tests.

41 An analyst group follows 250 firms and classifies them in two dimensions. First, 
they use dividend payment history and earnings forecasts to classify firms into 
one of three groups, with 1 indicating the dividend stars and 3 the dividend lag-
gards. Second, they classify firms on the basis of financial leverage, using debt 
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ratios, debt features, and corporate governance to classify the firms into three 
groups, with 1 indicating the least risky firms based on financial leverage and 3 
indicating the riskiest. The classification of the 250 firms is as follows:

Financial Leverage 
Group

Dividend Group

1 2 3

1 40 40 40
2 30 10 20
3 10 50 10

A What are the null and alternative hypotheses to test whether the dividend 
and financial leverage groups are independent of one another?

B What is the appropriate test statistic to use in this type of test?
C If the critical value for the 0.05 level of significance is 9.4877, what is your 

conclusion?
42 Which of the following statements is correct regarding the chi- square test of 

independence?
A The test has a one- sided rejection region.
B The null hypothesis is that the two groups are dependent.
C If there are two categories, each with three levels or groups, there are six 

degrees of freedom.
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SOLUTIONS

1 C is correct. Together, the null and alternative hypotheses account for all pos-
sible values of the parameter. Any possible values of the parameter not covered 
by the null must be covered by the alternative hypothesis (e.g., H0: μ ≤ 5 versus 
Ha: μ > 5). 

2 A The appropriate test statistic is a t-statistic, t
X

s
n

�
� �0 , with n − 1 = 15 

− 1 = 14 degrees of freedom. A t-statistic is correct when the sample comes 
from an approximately normally distributed population with unknown 
variance. 

B The appropriate test statistic is a t-statistic, t
X

s
n

�
� �0 , with 40 − 1 = 39 

degrees of freedom. A t-statistic is theoretically correct when the sample 
comes from a normally distributed population with unknown variance. 

C The appropriate test statistic is a z-statistic, z
X

n

�
� �
�

0 ,  because the sample 

comes from a normally distributed population with a known variance. 

D The appropriate test statistic is chi- square, x s n2
2

0
2

1
�

�( ) ,
�

 with 50 − 1 = 49 
degrees of freedom.

E The appropriate test statistic is the F-statistic, F � �
�

1
2

2
2 ,  with 29 and 39 

degrees of freedom.
F The appropriate test statistic is a t-statistic using a pooled estimate of the 

population variance: t
X X

s
n

s
n

p p

�
�� � � �� �

�

1 2 1 2
2

1

2

2

� �
,  where

s
n s n s

n np
2 1 1

2
2 2

2

1 2

1 1
2

�
�� � � �� �

� �
. The t-statistic has 25 + 30 − 2 = 53 degrees of 

freedom. This statistic is appropriate because the populations are normally 
distributed with unknown variances; because the variances are assumed to 
be equal, the observations can be pooled to estimate the common variance. 
The requirement of independent samples for using this statistic has been 
met. 

3 We make the decision either by comparing the calculated test statistic with the 
critical values or by comparing the p-value for the calculated test statistic with 
the level of significance.
A Reject the null hypothesis because the calculated test statistic is outside the 

bounds of the critical values.
B The calculated t-statistic is in the rejection region that is defined by +1.679, 

so we reject the null hypothesis.
C The p-value corresponding to the calculated test statistic is less than the 

level of significance, so we reject the null hypothesis.
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D We fail to reject because the p-value for the calculated test statistic is 
greater than what is tolerated with a 2% level of significance.

4 We make the decision either by comparing the calculated test statistic with the 
critical values or by comparing the p-value for the calculated test statistic with 
the level of significance.
A The calculated chi- square falls between the two critical values, so we fail to 

reject the null hypothesis.
B The p-value for the calculated test statistic is less than the level of signifi-

cance (the 5%), so we reject the null hypothesis.
C The calculated F-statistic falls outside the bounds of the critical F-values, so 

we reject the null hypothesis.
D The calculated chi- square exceeds the critical value for this right- side test, 

so we reject the null hypothesis.
5 A As stated in the text, we often set up the “hoped for” or “suspected” condi-

tion as the alternative hypothesis. Here, that condition is that the population 
value of Willco’s mean annual net income exceeds $24 million. Thus, we 
have H0: μ ≤ 24 versus Ha: μ > 24.

B Given that net income is normally distributed with unknown variance, the 

appropriate test statistic is t
X

s
n

�
�

�
�0 1 469694.  with n − 1 = 6 − 1 = 5 

degrees of freedom.

C We reject the null if the calculated t-statistic is greater than 2.015. The 

calculated t-statistic is t � �
�

30 24
10

6

1 469694. . Because the calculated test 

statistic does not exceed 2.015, we fail to reject the null hypothesis. There is 
not sufficient evidence to indicate that the mean net income is greater than 
$24 million.

6 A H0: μ = 0 versus Ha: μ ≠ 0.

B The t-test is based on t
X
s n

�
� �0  with n − 1 = 10 − 1 = 9 degrees of 

freedom. At the 0.05 significance level, we reject the null if the calculated 
t-statistic is outside the bounds of ±2.262 (from the table for 9 degrees of 
freedom and 0.025 in the right side of the distribution). For Analyst A, we 

have a calculated test statistic of t � �
�

0 05 0
0 10

10

1 58114.
.

. . We, therefore, fail 

to reject the null hypothesis at the 0.05 level.
C For Analyst B, the t-test is based on t with 15 − 1 = 14 degrees of freedom. 

At the 0.05 significance level, we reject the null if the calculated t-statistic is 
outside the bounds of ±2.145 (from the table for 14 degrees of freedom). 

The calculated test statistic is t � �
�

0 02 0
0 09

10

0 86066.
.

. . Because 0.86066 is 

within the range of ±2.145, we fail to reject the null at the 0.05 level.
7 A Stating the suspected condition as the alternative hypothesis, we have

H0: μA − μB ≤ 0 versus Ha: μA − μB > 0, 
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 where

 μA = the population mean value of Analyst A’s forecast errors
 μB = the population mean value of Analyst B’s forecast errors

B We have two normally distributed populations with unknown variances. 
Based on the samples, it is reasonable to assume that the population 
variances are equal. The samples are assumed to be independent; this 
assumption is reasonable because the analysts cover different industries. The 
appropriate test statistic is t using a pooled estimate of the common vari-

ance: t X X

s
n

s
n

p p

�
� � �

�

( ) ( )
,1 2 1 2

2

1

2

2

� �
 where s n s n s

n np
2 1 1

2
2 2

2

1 2

1 1
2

�
� � �

� �
( ) ( )

. The 

number of degrees of freedom is nA + nB − 2 = 10 +15 − 2 = 23.
C For df = 23, according to the table, the rejection point for a one- sided (right 

side) test at the 0.05 significance level is 1.714.
D We first calculate the pooled estimate of variance:

sp
2 10 1 0 01 15 1 0 0081

10 15 2
0 0088435�

� � �
� �

�
( ) . ( ) . . . 

 We then calculate the t-distributed test statistic:

t � � �

�
� �

( . . )
. .

.
.

.0 05 0 02 0
0 0088435

10
0 0088435

15

0 03
0 0383916

0 781442.

 Because 0.78142 < 1.714, we fail to reject the null hypothesis. There is not 
sufficient evidence to indicate that the mean for Analyst A exceeds that for 
Analyst B.

8 A We test H0: μd = 0 versus Ha: μd ≠ 0, where μd is the population mean 
difference.

B This is a paired comparisons t-test with n − 1 = 480 − 1 = 479 degrees of 
freedom. At the 0.05 significance level, we reject the null hypothesis if the 
calculated t is less than −1.96 or greater than 1.96.

t
d

s
d

d
�

�
�

� �
�

�
� � �

� 0 0 258 0
3 752 480

0 258
0 171255

1 506529.
.

.
.

. ,  or 1.551.

 Because the calculate t-statistic is between ±1.96, we do not reject the null 
hypothesis that the mean difference between the returns on the S&P 500 
and small- cap stocks during the entire sample period was zero.

C This t-test now has n − 1 = 240 − 1 = 239 degrees of freedom. At the 0.05 
significance level, we reject the null hypothesis if the calculated t is less than 
−1.96 or greater than 1.96. 

t
d

s
d

d
�

�
�

� �
�

�
� � �

� 0 0 640 0
4 096 240

0 640
0 264396

2 420615.
.

.
.

. ,  or 2.442.

 Because −2.42 < −1.96, we reject the null hypothesis at the 0.05 significance 
level. We conclude that during this subperiod, small- cap stocks significantly 
outperformed the S&P 500.
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D This t-test has n − 1 = 240 − 1 = 239 degrees of freedom. At the 0.05 signif-
icance level, we reject the null hypothesis if the calculated t-statistic is less 
than −1.96 or greater than 1.96. The calculated test statistic is

t
d

s
d

d
�

�
�

�
� �

� 0 0 125 0
3 339 240

0 125
0 215532

0 579962 0 58.
.

.
.

. , . . or 

 At the 0.05 significance level, because the calculated test statistic of 0.58 
is between ±1.96, we fail to reject the null hypothesis for the second 
subperiod.

9 A We have a “less than” alternative hypothesis, where σ2 is the variance of 
return on the portfolio. The hypotheses are H0: σ2 ≥ 400 versus Ha: σ2 < 400, 
where 400 is the hypothesized value of variance, σ0

2 . This means that the 
rejection region is on the left side of the distribution.

B The test statistic is chi- square distributed with 10 − 1 = 9 degrees of free-

dom: Ç
Ã

2
2

0
2

1
�

�� �n s
.

C The test statistic is calculated as

�
�

2
2

0
2

21 9 15
400

2 025
400

5 0625�
�� �

�
�

� �
n s , . , or  5.06.

 Because 5.06 is not less than 3.325, we do not reject the null hypothesis; 
the calculated test statistic falls to the right of the critical value, where the 
critical value separates the left- side rejection region from the region where 
we fail to reject.

 We can determine the critical value for this test using software: 

Excel [CHISQ.INV(0.05,9)]
R [qchisq(.05,9)]
Python [from scipy.stats import chi2 and chi2.ppf(.05,9)]

 We can determine the p-value for the calculated test statistic of 17.0953 
using software: 

Excel [CHISQ.DIST(5.06,9,TRUE)]
R [pchisq(5.06,9,lower.tail=TRUE)]
Python [from scipy.stats import chi2 and chi2.cdf(5.06,9)]

10 A We have a “not equal to” alternative hypothesis:

H Before After Ha Before After0
2 2 2 2: :� � � �� � versus 

B To test a null hypothesis of the equality of two variances, we use an F-test:

F s
s

= 1
2

2
2 .

 F = 22.367/15.795 = 1.416, with 120 − 1 = 119 numerator and 120 − 1 = 119 
denominator degrees of freedom. Because this is a two- tailed test, we use 
critical values for the 0.05/2 = 0.025 level. The calculated test statistic falls 
within the bounds of the critical values (that is, between 0.6969 and 1.4349), 
so we fail to reject the null hypothesis; there is not enough evidence to 
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indicate that the variances are different before and after the disruption. Note 
that we could also have formed the F-statistic as 15.796/22.367 = 0.706 and 
draw the same conclusion.

 We could also use software to calculate the critical values: 

Excel [F.INV(0.025,119,119) and F.INV(0.975,119,119)]
R [qf(c(.025,.975),119,119)]
Python from scipy.stats import f and f.ppf
     [(.025,119,119) and
     f.ppf(.975,119,119)]

 Additionally, we could use software to calculate the p-value of the calcu-
lated test statistic, which is 5.896% and then compare it with the level of 
significance: 

Excel [(1- F.DIST(22.367/15.796,119,119,TRUE))*2 or
     F.DIST(15.796/22.367,119,119,TRUE)*2] 
R [(1- pf(22.367/15.796,119,119))*2 or
     pf(15.796/22.367,119,119)*2 ]
Python from scipy.stats import f and f.cdf
      [(15.796/22.367,119,119)*2 or
      (1- f.cdf(22.367/15.796,119,119))*2]

11 The hypotheses are H0: ρ = 0 and Ha: ρ ≠ 0. The calculated test statistics are 

based on the formula t r n

r
�

�

�

2

1 2
. For example, the calculated t-statistic for 

the correlation of Fund 3 and Fund 4 is 

t r n

r
�

�

�
�

�

�
�

2

1

0 3102 36 2

1 0 3102
1 903

2 2

.

.
. .

 Repeating this calculation for the entire matrix of correlations gives the 
following:

Calculated t-Statistics for Correlations

Fund 1 Fund 2 Fund 3 Fund 4 S&P 500

Fund 1

Fund 2 13.997

Fund 3 3.165 2.664

Fund 4 5.897 6.116 1.903

S&P 500 8.600 8.426 4.142 6.642

 With critical values of ±2.032, with the exception of the correlation between 
Fund 3 and Fund 4 returns, we reject the null hypothesis for these correlations. 
In other words, there is sufficient evidence to indicate that the correlations are 
different from zero, with the exception of the correlation of returns between 
Fund 3 and Fund 4.

 We could use software to determine the critical values: 
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Excel [T.INV(0.025,34) and T.INV(0.975,34)]
R [qt(c(.025,.975),34)]
Python [from scipy.stats import t and t.ppf(.025,34) and t.ppf(.975,34)]

 We could also use software to determine the p-value for the calculated test 
statistic to enable a comparison with the level of significance. For example, for t 
= 2.664, the p-value is 0.01172: 

Excel [(1- T.DIST(2.664,34,TRUE))*2]
R [(1- pt(2.664,34))*2]
Python [from scipy.stats import t and (1- t.cdf(2.664,34))*2]

12 B is correct. The critical value in a decision rule is the rejection point for the 
test. It is the point with which the test statistic is compared to determine 
whether to reject the null hypothesis, which is part of the fourth step in hypoth-
esis testing.

13 A is correct. The null hypothesis and the alternative hypothesis are comple-
ments of one another and together are exhaustive; that is, the null and alter-
native hypotheses combined consider all the possible values of the population 
parameter.

14 A is correct. If the population sampled has unknown variance and the sample 
is large, a z-test may be used. Hypotheses involving “greater than” or “less than” 
postulations are one sided (one tailed). In this situation, the null and alternative 
hypotheses are stated as H0: μ ≤ 6% and Ha: μ > 6%, respectively. A one- tailed 
t-test is also acceptable in this case, and the rejection region is on the right side 
of the distribution.

15 C is correct. For a one- tailed hypothesis test, there is a 5% rejection region in 
one tail of the distribution. 

16 B is correct. One- tailed tests in which the alternative is “greater than” or “less 
than” represent the beliefs of the researcher more firmly than a “not equal to” 
alternative hypothesis.

17 A is correct. Calculated using a sample, a test statistic is a quantity whose value 
is the basis for deciding whether to reject the null hypothesis.

18 A is correct. The definition of a Type I error is when a true null hypothesis is 
rejected.

19 B is correct. A Type II error occurs when a false null hypothesis is not rejected.
20 B is correct. The level of significance is used to establish the rejection points of 

the hypothesis test.
21 A We have a “not equal to” alternative hypothesis:

H0: ρ = 0 versus Ha: ρ ≠ 0

B Mutual fund expense ratios are bounded from above and below; in practice, 
there is at least a lower bound on alpha (as any return cannot be less than 
−100%), and expense ratios cannot be negative. These variables may not be 
normally distributed, and the assumptions of a parametric test are not likely 
to be fulfilled. Thus, a nonparametric test appears to be appropriate.
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 We would use the nonparametric Spearman rank correlation coefficient to 

conduct the test: r
d

n n
s

ii
n

� �
�
��1

6

1

2
1

2( )
 with the t-distributed test statistic 

of t r n

r
�

�

�

2

1 2
.

C The calculation of the Spearman rank correlation coefficient is given in the 
following table.

Mutual 
Fund Alpha

Expense 
Ratio

Rank 
by 

Alpha

Rank by 
Expense 

Ratio
Difference 

in Rank
Difference 

Squared

1 −0.52 1.34 6 6 0 0
2 −0.13 0.40 1 9 −8 64
3 −0.50 1.90 5 1 4 16
4 −1.01 1.50 9 2 7 49
5 −0.26 1.35 3 5 −2 4
6 −0.89 0.50 8 8 0 0
7 −0.42 1.00 4 7 −3 9
8 −0.23 1.50 2 2 0 0
9 −0.60 1.45 7 4 3 9

151

rs � � � �1 6 151
9 80

0 25833( )
( )

. .

 The calculated test statistic, using the t-distributed test statistic t r n

r
�

�

�

2

1 2
 

is t � �
�

�
�

� �
0 25833 7

1 0 066736
0 683486

0 9332638
0 7075.

.
.

.
. . On the basis of this value 

falling within the range of +2.306, we fail to reject the null hypothesis that 
the Spearman rank correlation coefficient is zero. 

22 B is correct. Specifying a smaller significance level decreases the probability of 
a Type I error (rejecting a true null hypothesis) but increases the probability of 
a Type II error (not rejecting a false null hypothesis). As the level of significance 
decreases, the null hypothesis is less frequently rejected.

23 B is correct. The power of a test is the probability of rejecting the null hypothe-
sis when it is false.

24 B is correct. The power of a hypothesis test is the probability of correctly reject-
ing the null when it is false. Failing to reject the null when it is false is a Type II 
error. Thus, the power of a hypothesis test is the probability of not committing a 
Type II error. 

25 C is correct. When a statistically significant result is also economically mean-
ingful, one should further explore the logic of why the result might work in the 
future.

26 A is correct. The hypothesis is a two- tailed formulation. The t-statistic of 
2.802 falls outside the critical rejection points of less than −2.756 and greater 
than 2.756. Therefore, the null hypothesis is rejected; the result is statistically 
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significant. However, despite the statistical results, trying to profit on the strat-
egy is not likely to be economically meaningful because the return is near zero 
after transaction costs.

27 C is correct. When directly comparing the p-value with the level of significance, 
it can be used as an alternative to using rejection points to reach conclusions on 
hypothesis tests. If the p-value is smaller than the specified level of significance, 
the null hypothesis is rejected. Otherwise, the null hypothesis is not rejected.

28 C is correct. The p-value is the smallest level of significance at which the 
null hypothesis can be rejected for a given value of the test statistic. The null 
hypothesis is rejected when the p-value is less than the specified significance 
level.

29 C is correct. The p-value is the smallest level of significance (α) at which the 
null hypothesis can be rejected. 

30 B is correct. The p-value is the smallest level of significance (α) at which the 
null hypothesis can be rejected. If the p-value is less than α, the null is rejected. 
In Test 1, the p-value exceeds the level of significance, whereas in Test 2, the 
p-value is less than the level of significance. 

31 B is correct. The z-test is theoretically the correct test to use in those limited 
cases when testing the population mean of a normally distributed population 
with known variance.

32 B is correct. A t-statistic is the most appropriate for hypothesis tests of the 
population mean when the variance is unknown and the sample is small but the 
population is normally distributed.

33 A is correct. The calculated t-statistic value of 0.4893 falls within the bounds 
of the critical t-values of ±1.984. Thus, H0 cannot be rejected; the result is not 
statistically significant at the 0.05 level. 

34 B is correct. The assumption that the variances are equal allows for the combin-
ing of both samples to obtain a pooled estimate of the common variance.

35 C is correct. A paired comparisons test is appropriate to test the mean differ-
ences of two samples believed to be dependent.

36 A is correct. A chi- square test is used for tests concerning the variance of a 
single normally distributed population.

37 B is correct. An F-test is used to conduct tests concerning the difference 
between the variances of two normally distributed populations with random 
independent samples.

38 A is correct. The calculated test statistic is

t r n

r
�

�

�

�
� �

� �� �
� �

2

1
0 1452 248 2

1 0 1452
2 30177

2

2

.

.
. .

 Because the value of t = −2.30177 is outside the bounds of ±1.96, we reject the 
null hypothesis of no correlation and conclude that there is enough evidence to 
indicate that the correlation is different from zero. 

39 A is correct. A nonparametric test is used when the data are given in ranks.
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40 B is correct. There are only 12 (monthly) observations over the one year of 
the sample and thus the samples are small. Additionally, the funds’ returns are 
non- normally distributed. Therefore, the samples do not meet the distributional 
assumptions for a parametric test. The Mann–Whitney U test (a nonparametric 
test) could be used to test the differences between population means.

41 A The hypotheses are as follows:
H0: Dividend and financial leverage ratings are not related, so these 
groupings are independent.
Ha: Dividend and financial leverage ratings are related, so these group-
ings are not independent.

B The appropriate test statistic is �2
2

1�
�� �

��
O E

E
ij ij

ij
i
m , where Oij represents 

the observed frequency for the i and j group and Eij represents the expected 
frequency for the i and j group if the groupings are independent.

C The expected frequencies based on independence are as follows:

Financial Leverage 
Group

Dividend Group

1 2 3 Sum

1 38.4 48 33.6 120
2 19.2 24 16.8 60
3 22.4 28 19.6 70

Sum 80 100 70 250

 The scaled squared deviations for each combination of financial leverage 
and dividend grouping are:

Financial Leverage 
Group

Dividend Group

1 2 3

1 0.06667 1.33333 1.21905
2 6.07500 8.16667 0.60952
3 6.86429 17.28571 4.70204

 The sum of these scaled squared deviations is the calculated chi- square sta-
tistic of 46.3223. Because this calculated value exceeds the critical value of 
9.4877, we reject the null hypothesis that these groupings are independent.

42 A is correct. The test statistic comprises squared differences between the 
observed and expected values, so the test involves only one side, the right side. 
B is incorrect because the null hypothesis is that the groups are independent, 
and C is incorrect because with three levels of groups for the two categorical 
variables, there are four degrees of freedom.
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LEARNING OUTCOMES
Mastery The candidate should be able to:

a. describe a simple linear regression model and the roles of the 
dependent and independent variables in the model; 

b. describe the least squares criterion, how it is used to estimate 
regression coefficients, and their interpretation;

c. explain the assumptions underlying the simple linear regression 
model, and describe how residuals and residual plots indicate if 
these assumptions may have been violated;

d. calculate and interpret the coefficient of determination and the 
F-statistic in a simple linear regression;

e. describe the use of analysis of variance (ANOVA) in regression 
analysis, interpret ANOVA results, and calculate and interpret the 
standard error of estimate in a simple linear regression;

f. formulate a null and an alternative hypothesis about a population 
value of a regression coefficient, and determine whether the null 
hypothesis is rejected at a given level of significance;

g. calculate and interpret the predicted value for the dependent 
variable, and a prediction interval for it, given an estimated linear 
regression model and a value for the independent variable;

h. describe different functional forms of simple linear regressions.

SIMPLE LINEAR REGRESSION

a describe a simple linear regression model and the roles of the dependent and 
independent variables in the model

1

R E A D I N G

7

© 2021 CFA Institute. All rights reserved.

© CFA Institute. For candidate use only. Not for distribution.



Reading 7 ■ Introduction to Linear Regression432

Financial analysts often need to examine whether a variable is useful for explaining 
another variable. For example, the analyst may want to know whether earnings growth, 
or perhaps cash flow growth, helps explain the company’s value in the marketplace. 
Regression analysis is a tool for examining this type of issue.

Suppose an analyst is examining the return on assets (ROA) for an industry and 
observes the ROA for the six companies shown in Exhibit 1. The average of these 
ROAs is 12.5%, but the range is from 4% to 20%.

Exhibit 1   Return on Assets of Selected Companies

Company ROA (%)

A 6
B 4
C 15
D 20
E 10
F 20

In trying to understand why the ROAs differ among these companies, we could 
look at why the ROA of Company A differs from that of Company B, why the ROA 
of Company A differs from that of Company D, why the ROA of Company F differs 
from that of Company C, and so on, comparing each pair of ROAs. A way to make 
this a simpler exploration is to try to understand why each company’s ROA differs 
from the mean ROA of 12.5%. We look at the sum of squared deviations of the obser-
vations from the mean to capture variations in ROA from their mean. Let Y represent 
the variable that we would like to explain, which in this case is the return on assets. 
Let Yi  represent an observation of a company’s ROA, and let Y  represent the mean 
ROA for the sample of size n. We can describe the variation of the ROAs as

Variation of Y Y Yii
n� ��� ( ) .2

1

Our goal is to understand what drives these returns on assets or, in other words, 
what explains the variation of Y. The variation of Y is often referred to as the sum of 
squares total (SST), or the total sum of squares.

We now ask whether it is possible to explain the variation of the ROA using 
another variable that also varies among the companies; note that if this other variable 
is constant or random, it would not serve to explain why the ROAs differ from one 
another. Suppose the analyst believes that the capital expenditures in the previous 
period, scaled by the prior period’s beginning property, plant, and equipment, are a 
driver for the ROA variable. Let us represent this scaled capital expenditures variable 
as CAPEX, as we show in Exhibit 2.

Exhibit 2   Return on Assets and Scaled Capital 
Expenditures

Company
ROA 
(%)

CAPEX 
(%)

A 6.0 0.7
B 4.0 0.4
C 15.0 5.0

(1)

© CFA Institute. For candidate use only. Not for distribution.



Simple Linear Regression 433

Company
ROA 
(%)

CAPEX 
(%)

D 20.0 10.0
E 10.0 8.0
F 20.0 12.5

Arithmetic mean 12.50 6.10

The variation of X, in this case CAPEX, is calculated as

Variation of X X Xii
n� ��� ( ) .2

1

We can see the relation between ROA and CAPEX in the scatter plot (or scatter-
gram) in Exhibit 3, which represents the two variables in two dimensions. Typically, 
we present the variable whose variation we want to explain along the vertical axis 
and the variable whose variation we want to use to explain that variation along the 
horizontal axis. Each point in this scatter plot represents a paired observation that 
consists of CAPEX and ROA. From a casual visual inspection, there appears to be a 
positive relation between ROA and CAPEX: Companies with higher CAPEX tend to 
have a higher ROA.

Exhibit 3   Scatter Plot of ROA and CAPEX

ROA (%)

2525

2020

1515

1010

55

00

00 14144422 66 101088 1212

CAPEX (%)

0.7, 6.0

0.4, 4.0

5.0, 15.0

8.0, 10.0

10.0, 20.0 12.5, 20.0

In the ROA example, we use the capital expenditures to explain the returns on 
assets. We refer to the variable whose variation is being explained as the dependent 
variable, or the explained variable; it is typically denoted by Y. We refer to the vari-
able whose variation is being used to explain the variation of the dependent variable 
as the independent variable, or the explanatory variable; it is typically denoted by 
X. Therefore, in our example, the ROA is the dependent variable (Y) and CAPEX is 
the independent variable (X).

(2)

Exhibit 2   (Continued)
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A common method for relating the dependent and independent variables is through 
the estimation of a linear relationship, which implies describing the relation between 
the two variables as represented by a straight line. If we have only one independent 
variable, we refer to the method as simple linear regression (SLR); if we have more 
than one independent variable, we refer to the method as multiple regression.

Linear regression allows us to test hypotheses about the relationship between two 
variables, by quantifying the strength of the relationship between the two variables, 
and to use one variable to make predictions about the other variable. Our focus is on 
linear regression with a single independent variable—that is, simple linear regression.

EXAMPLE 1  

Identifying the Dependent and Independent Variables in 
a Regression
An analyst is researching the relationship between corporate earnings growth 
and stock returns. Specifically, she is interested in whether earnings revisions 
affect stock price returns in the same period. She collects five years of monthly 
data on “Wall Street” EPS revisions for a sample of 100 companies and on their 
monthly stock price returns over the five- year period.

What are the dependent and independent variables in her model?

Solution
The dependent variable is monthly stock price returns, and the independent 
variable is Wall Street EPS revisions, since in the analyst’s model, the variation in 
monthly stock price returns is being explained by the variation in EPS revisions.

ESTIMATING THE PARAMETERS OF A SIMPLE LINEAR 
REGRESSION

b describe the least squares criterion, how it is used to estimate regression coeffi-
cients, and their interpretation

2.1 The Basics of Simple Linear Regression
Regression analysis begins with the dependent variable, the variable whose variation 
you are seeking to explain. The independent variable is the variable whose variation 
you are using to explain changes in the dependent variable. For example, you might 
try to explain small- stock returns (the dependent variable) using returns to the S&P 
500 Index (the independent variable). Or you might try to explain a country’s infla-
tion rate (the dependent variable) as a function of growth in its money supply (the 
independent variable).

As the name implies, linear regression assumes a linear relationship between the 
dependent and the independent variables. The goal is to fit a line to the observations 
on Y and X to minimize the squared deviations from the line; this is the least squares 
criterion—hence, the name least squares regression. Because of its common use, linear 
regression is often referred to as ordinary least squares (OLS) regression.

2
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Estimating the Parameters of a Simple Linear Regression 435

Using notation, the linear relation between the dependent and independent vari-
ables is described as

Yi = b0 + b1Xi + εi, i = 1, . . . , n.

Equation 3 is a model that does not require that every (Y, X) pair for an observation fall 
on the regression line. This equation states that the dependent variable, Y, is equal to 
the intercept, b0, plus a slope coefficient, b1, multiplied by the independent variable, 
X, plus an error term, ε. The error term, or simply the error, represents the difference 
between the observed value of Y and that expected from the true underlying popula-
tion relation between Y and X. We refer to the intercept, b0, and the slope coefficient, 
b1, as the regression coefficients. A way that we often describe this simple linear 
regression relation is that Y is regressed on X.

Consider the ROA and CAPEX scatter diagram from Exhibit 3, which we elaborate 
on in Exhibit 4 by including the fitted regression line. This line represents the average 
relationship between ROA and CAPEX; not every observation falls on the line, but 
the line describes the mean relation between ROA and CAPEX.

Exhibit 4   Fitted Regression Line of ROA and CAPEX

ROA (Y,%)

2525

2020

1515

1010

55

00

00 14144422 66 101088 1212

CAPEX (X,%)

Regression LineObserved Values

2.2 Estimating the Regression Line
We cannot observe the population parameter values b0 and b1 in a regression model. 

Instead, we observe only b 0  and b1, which are estimates (as indicated by the “hats” 
above the coefficients) of the population parameters based on the sample. Thus, pre-
dictions must be based on the parameters’ estimated values, and testing is based on 
estimated values in relation to the hypothesized population values.

We estimate the regression line as the line that best fits the observations. In simple 

linear regression, the estimated intercept, b 0 , and slope, b1, are such that the sum of 
the squared vertical distances from the observations to the fitted line is minimized. 
The focus is on the sum of the squared differences between the observations on Yi 
and the corresponding estimated value, Y i , on the regression line.

We represent the value of the dependent variable for the ith observation that falls 
on the line as Y i , which is equal to b b Xi

 0 1+ . The Y i  is what the estimated value of 
the Y variable would be for the ith observation based on the mean relationship between 

(3)
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Y and X. The residual for the ith observation, ei , is how much the observed value 

of Yi  differs from the Y i estimated using the regression line: e Y Yi i i� �  . Note the 
subtle difference between the error term and the residual: The error term refers to 
the true underlying population relationship, whereas the residual refers to the fitted 
linear relation based on the sample.

Fitting the line requires minimizing the sum of the squared residuals, the sum of 
squares error (SSE), also known as the residual sum of squares:

Sum of squares error = ( )Y Y

Y b b X

i ii
n

i ii

�

� � �� ��
�

�
�

�

�

� �

� �

2
1

0 111

2

2
1

n

ii
n e

�

�� � .

Using least squares regression to estimate the values of the population parameters 
of b0  and b1, we can fit a line through the observations of X and Y that explains the 
value that Y takes for any particular value of X.

As seen in Exhibit 5, the residuals are represented by the vertical distances from 
the fitted line (see the third and fifth observations, Companies C and E, respectively) 
and are, therefore, in the units of measurement represented by the dependent vari-
able. The residual is in the same unit of measurement as the dependent variable: If 
the dependent variable is in euros, the error term is in euros, and if the dependent 
variable is in growth rates, the error term is in growth rates.

Exhibit 5   Residuals of the Linear Regression

ROA (Y,%)

2525

2020

1515
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55

00

00 14144422 66 101088 1212

CAPEX (X,%)

Company C Residual:
e3 = Y3 – (b0 – b1X3)

Company E Residual:
e5 = Y5 – (b0 – b1X5)

Regression Line

Observed Values of Y Predicted Values of Y

^ ^
^ ^

(4)

© CFA Institute. For candidate use only. Not for distribution.



Estimating the Parameters of a Simple Linear Regression 437

How do we calculate the intercept ( b0 ) and the slope ( b1) for a given sample of 
(Y, X) pairs of observations? The slope is the ratio of the covariance between Y and 
X to the variance of X, where Y  is the mean of the Y variable and X  is the mean of 
X variable:

b
Y X

X

Y Y X X

n
i ii

n

1

1

� �

� �

�
��

Covariance of  and 
Variance of 

( )( )

11

1

2
1( )

.
X X

n
ii

n �

�
��

Simplifying,

b
Y Y X X

X X
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�
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�
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�
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( )( )

( )
.

Once we estimate the slope, we can then estimate the intercept using the mean of Y 
and the mean of X:

b Y b X 0 1� � .

We show the calculation of the slope and the intercept in Exhibit 6.

Exhibit 6   Estimating Slope and Intercept for the ROA Model

Company ROA (Yi) CAPEX (Xi) 
Y Yi �� �2 X Xi �� �2 Y Y Xi i�� � �� �X

A 6.0 0.7 42.25 29.16 35.10
B 4.0 0.4 72.25 32.49 48.45
C 15.0 5.0 6.25 1.21 −2.75
D 20.0 10.0 56.25 15.21 29.25
E 10.0 8.0 6.25 3.61 −4.75
F 20.0 12.5 56.25 40.96 48.00
Sum 75.0 36.6 239.50 122.64 153.30

Arithmetic mean 12.5 6.100

Slope coefficient: 
b1

153 30
122 64

1 25= =
.
.

. .
 

Intercept: b
0 12 5 1 25 6 10 4 875� � � �. ( . . ) .  

ROA regression model: Y Xi i i
 � � �4 875 1 25. . .�  

Notice the similarity of the formula for the slope coefficient and that of the pairwise 
correlation. The sample correlation, r, is the ratio of the covariance to the product of 
the standard deviations:

r
Y X

Y

�
�

�
�

�

�
�

Covariance of  and 
Standard deviation

of 

Standardd deviation

of X
�

�
�

�

�
�

.

(5)

(6)
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The subtle difference between the slope and the correlation formulas is in the 
denominator: For the slope, this is the variance of the independent variable, but for 
the correlation, the denominator is the product of the standard deviations. For our 
ROA and CAPEX analysis,

Covariance of Y and X: covXY
ii

n
iY Y X X

n
�

� �

�
� ��� ( )( ) .

. .1

1
153 30

5
30 66

Standard deviation of Y and X:

S
Y Y

n

S
X X

n

Y
ii

n

X
ii

n
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1
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5
4 9526� . .

r = =
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6 9210 4 9526
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Because the denominators of both the slope and the correlation are positive, the 
sign of the slope and the correlation are driven by the numerator: If the covariance 
is positive, both the slope and the correlation are positive, and if the covariance is 
negative, both the slope and the correlation are negative.

HOW DO ANALYSTS PERFORM SIMPLE LINEAR 
REGRESSION? 

Typically, an analyst will use the data analysis functions on a spreadsheet, such as Microsoft 
Excel, or a statistical package in the R or Python programming languages to perform linear 
regression analysis. The following are some of the more common choices in practice.

Simple Linear Regression: Intercept and Slope

■■ Excel: Use the INTERCEPT, SLOPE functions.
■■ R: Use the lm function.
■■ Python: Use the sm.OLS function in the statsmodels package.

Correlations

■■ Excel: Use the CORREL function.
■■ R: Use the cor function in the stats library.
■■ Python: Use the corrcoef function in the numpy library.

Note that in R and Python, there are many choices for regression and correlation analysis.

2.3 Interpreting the Regression Coefficients
What is the meaning of the regression coefficients? The intercept is the value of the 
dependent variable if the value of the independent variable is zero. Importantly, this 
does not make sense in some contexts, especially if it is unrealistic that the independent 
variable would be zero. For example, if we have a model where money supply explains 
GDP growth, the intercept has no meaning because, practically speaking, zero money 
supply is not possible. If the independent variable were money supply growth, however, 
the intercept is meaningful. The slope is the change in the dependent variable for a 
one- unit change in the independent variable. If the slope is positive, then the change 

(7a)

(7b)
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in the independent variable and that of the dependent variable will be in the same 
direction; if the slope is negative, the change in the independent variable and that of 
the dependent variable will be in opposite directions.

INTERPRETING POSITIVE AND NEGATIVE SLOPES

Suppose the dependent variable (Y) is in millions of euros and the independent variable 
(X) is in millions of US dollars.

If the slope is positive 1.2, then

↑ USD1 million → ↑ EUR1.2 million

↓ USD1 million → ↓ EUR1.2 million

If the slope is negative 1.2, then

↑ USD1 million → ↓ EUR1.2 million

↓ USD1 million → ↑ EUR1.2 million

Using the ROA regression model from Exhibit 6, we would interpret the estimated 
coefficients as follows:

■■ The return on assets for a company is 4.875% if the company makes no capital 
expenditures.

■■ If CAPEX increases by one unit—say, from 4% to 5%—ROA increases by 1.25%.

Using the estimated regression coefficients, we can determine the values of the 
dependent variable if they follow the average relationship between the dependent 
and independent variables. A result of the mathematics of the least squares fitting 
of the regression line is that the expected value of the residual term is zero: E(ε) = 0.

We show the calculation of the predicted dependent variable and residual term 
for each observation in the ROA example in Exhibit 7. Note that the sum and average 

of Yi  and Y1  are the same, and the sum of the residuals is zero.

Exhibit 7   Calculation of the Dependent Variable and Residuals for the ROA 
and CAPEX Model

(1) (2) (3) (4)

Company ROA (Yi)
CAPEX 

(Xi)

Predicted ROA 
( )Y i

(1) − (3) 
Residual (ei)

A 6.0 0.7 5.750 0.250
B 4.0 0.4 5.375 −1.375
C 15.0 5.0 11.125 3.875
D 20.0 10.0 17.375 2.625
E 10.0 8.0 14.875 −4.875
F 20.0 12.5 20.500 −0.500

(continued)
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(1) (2) (3) (4)

Company ROA (Yi)
CAPEX 

(Xi)

Predicted ROA 
( )Y i

(1) − (3) 
Residual (ei)

Sum 75.0 36.6 75.000 0.000
Average 12.5 6.1 12.5 0.000

For Company C (i = 3),

Y b b X Xi i i i i
� � �� � � � � �0 1 4 875 1 25� �. .  

Y i � � � � � �4 875 1 25 5 0 4 875 6 25 11 125. ( . . ) . . .  

Y Y ei i i� � � � � 15 0 11 125 3 875. . . , the vertical distance in Exhibbit 5.  

Whereas the sum of the residuals must equal zero by design, the focus of fitting 
the regression line in a simple linear regression is minimizing the sum of the squared 
residual terms.

2.4 Cross- Sectional vs. Time- Series Regressions
Regression analysis uses two principal types of data: cross sectional and time series. 
A cross- sectional regression involves many observations of X and Y for the same 
time period. These observations could come from different companies, asset classes, 
investment funds, countries, or other entities, depending on the regression model. 
For example, a cross- sectional model might use data from many companies to test 
whether predicted EPS growth explains differences in price- to- earnings ratios during 
a specific time period. Note that if we use cross- sectional observations in a regression, 
we usually denote the observations as i = 1, 2, . . . , n.

Time- series data use many observations from different time periods for the same 
company, asset class, investment fund, country, or other entity, depending on the 
regression model. For example, a time- series model might use monthly data from 
many years to test whether a country’s inflation rate determines its short- term interest 
rates. If we use time- series data in a regression, we usually denote the observations 
as t = 1, 2, . . . , T. Note that in the sections that follow, we primarily use the notation 
i = 1, 2, . . . , n, even for time series.

EXAMPLE 2  

Estimating a Simple Linear Regression Model
An analyst is exploring the relationship between a company’s net profit margin 
and research and development expenditures. He collects data for an industry 
and calculates the ratio of research and development expenditures to revenues 
(RDR) and the net profit margin (NPM) for eight companies. Specifically, he 
wants to explain the variation that he observes in the net profit margin by using 
the variation he observes in the companies’ research and development spending. 
He reports the data in Exhibit 8.

Exhibit 7   (Continued)
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Exhibit 8   Observations on NPM and RDR for Eight 
Companies

Company
NPM 
(%)

RDR 
(%)

1 4 8
2 5 10
3 10 6
4 9 5
5 5 7
6 6 9
7 12 5
8 3 10

1 What is the slope coefficient for this simple linear regression model?
2 What is the intercept for this regression model?
3 How is this estimated linear regression model represented?
4 What is the pairwise correlation between NPM and RDR?

Solutions

1 The slope coefficient for the regression model is −1.3, and the details for 
the inputs to this calculation are in Exhibit 9.

Exhibit 9   Details of Calculation of Slope of NPM Regressed on RDR

Company

NPM 
(%)
(Yi)

RDR 
(%) 
(Xi)

Y Yi − X Xi −  ( )Y Yi −
2 ( )X Xi −

2 ( )( )Y Y X Xi i− −

1 4 8 −2.8 0.5 7.5625 0.25 −1.375
2 5 10 −1.8 2.5 3.0625 6.25 −4.375
3 10 6 3.3 −1.5 10.5625 2.25 −4.875
4 9 5 2.3 −2.5 5.0625 6.25 −5.625
5 5 7 −1.8 −0.5 3.0625 0.25 0.875
6 6 9 −0.8 1.5 0.5625 2.25 −1.125
7 12 5 5.3 −2.5 27.5625 6.25 −13.125
8 3 10 −3.8 2.5 14.0625 6.25 −9.375
Sum 54.0 60.0 0.0 0.0 71.5000 30.00 −39.0

Average 6.75 7.5

 Slope coefficient: b1
39

30
1 3�

�
� � . .  

2 The intercept of the regression model is 16.5:

Intercept: b0 6 75 1 3 7 5 6 75 9 75 16 5� � � � � � �. ( . . ) . . .
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3 The regression model is represented by Y Xi i i
 � � �16 5 1 3. . .�  

4 The pairwise correlation is −0.8421:

r �
�

�
�

� �
39

7
71 5

7
30

7

5 5714
3 1960 2 0702

0 8421
.

.
( . )( . )

. .

EXAMPLE 3  

Interpreting Regression Coefficients
An analyst has estimated a model that regresses a company’s return on equity 
(ROE) against its growth opportunities (GO), defined as the company’s three- 
year compounded annual growth rate in sales, over 20 years and produces the 
following estimated simple linear regression:

ROEi = 4 + 1.8 GOi + εi.

Both variables are stated in percentages, so a GO observation of 5% is included 
as 5.

1 The predicted value of the company’s ROE if its GO is 10% is closest to:
A 1.8%.
B 15.8%.
C 22.0%.

2 The change in ROE for a change in GO from 5% to 6% is closest to:
A 1.8%.
B 4.0%.
C 5.8%.

3 The residual in the case of a GO of 8% and an observed ROE of 21% is 
closest to:
A −1.8%.
B 2.6%.
C 12.0%.

Solutions

1 C is correct. The predicted value of ROE = 4 + (1.8 × 10) = 22.
2 A is correct. The slope coefficient of 1.8 is the expected change in the 

dependent variable (ROE) for a one- unit change in the independent vari-
able (GO).

3 B is correct. The predicted value is ROE = 4 + (1.8 × 8) = 18.4. The 
observed value of ROE is 21, so the residual is 2.6 = 21.0 − 18.4.
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ASSUMPTIONS OF THE SIMPLE LINEAR REGRESSION 
MODEL

c explain the assumptions underlying the simple linear regression model, and 
describe how residuals and residual plots indicate if these assumptions may 
have been violated

We have discussed how to interpret the coefficients in a simple linear regression model. 
Now we turn to the statistical assumptions underlying this model. Suppose that we 
have n observations of both the dependent variable, Y, and the independent variable, 
X, and we want to estimate the simple linear regression of Y regressed on X. We need 
to make the following four key assumptions to be able to draw valid conclusions from 
a simple linear regression model:

1 Linearity: The relationship between the dependent variable, Y, and the indepen-
dent variable, X, is linear.

2 Homoskedasticity: The variance of the regression residuals is the same for all 
observations.

3 Independence: The observations, pairs of Ys and Xs, are independent of 
one another. This implies the regression residuals are uncorrelated across 
observations.

4 Normality: The regression residuals are normally distributed.

Now we take a closer look at each of these assumptions and introduce the “best prac-
tice” of examining residual plots of regression results to identify potential violations 
of these key assumptions.

3.1 Assumption 1: Linearity
We are fitting a linear model, so we must assume that the true underlying relationship 
between the dependent and independent variables is linear. If the relationship between 
the independent and dependent variables is nonlinear in the parameters, estimating 
that relation with a simple linear regression model will produce invalid results: The 
model will be biased, because it will under- and overestimate the dependent variable 
at certain points. For example, Y b ei

b X
ii� �0 1 �  is nonlinear in b1, so we should not 

apply the linear regression model to it. Exhibit 10 shows an example of this exponential 
model, with a regression line indicated. You can see that this line does not fit this 
relationship well: For lower and higher values of X, the linear model underestimates 
the Y, whereas for the middle values, the linear model overestimates Y.

3
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Exhibit 10   Illustration of Nonlinear Relationship Estimated as a Linear 
Relationship

Y

X

Another implication of this assumption is that the independent variable, X, must 
not be random; that is, it is non- stochastic. If the independent variable is random, 
there would be no linear relation between the dependent and independent variables. 
Although we may initially assume that the independent variable in the regression 
model is not random, that assumption may not always be true.

When we look at the residuals of a model, what we would like to see is that the 
residuals are random. The residuals should not exhibit a pattern when plotted against 
the independent variable. As we show in Exhibit 11, the residuals from the Exhibit 10 
linear regression do not appear to be random but, rather, exhibit a relationship with 
the independent variable, X, falling for some range of X and rising in another.

Exhibit 11   Illustration of Residuals in a Nonlinear Relationship Estimated 
as a Linear Relationship

Y

X
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3.2 Assumption 2: Homoskedasticity
Assumption 2, that the variance of the residuals is the same for all observations, is 
known as the homoskedasticity assumption. In terms of notation, this assumption 
relates to the squared residuals:

E � ��i
2 2� � � , i = 1, . . . , n.

If the residuals are not homoscedastic, that is, if the variance of residuals differs across 
observations, then we refer to this as heteroskedasticity.

Suppose you are examining a time series of short- term interest rates as the depen-
dent variable and inflation rates as the independent variable over 16 years. We may 
believe that short- term interest rates (Y) and inflation rates (X) should be related (that 
is, interest rates are higher with higher rates of inflation. If this time series spans many 
years, with different central bank actions that force short- term interest rates to be 
(artificially) low for the last eight years of the series, then it is likely that the residuals 
in this estimated model will appear to come from two different models. We will refer 
to the first eight years as Regime 1 (normal rates) and the second eight years as Regime 
2 (low rates). If the model fits differently in the two regimes, the residuals and their 
variances will be different.

You can see this situation in Exhibit 12, which shows a scatter plot with an estimated 
regression line. The slope of the regression line over all 16 years is 1.1979.

Exhibit 12   Scatter Plot of Interest Rates (Y) and Inflation Rates (X)

Short-Term Interest Rate (Y,%)

5.05.0

4.04.0

3.03.0

2.02.0

1.01.0

0.50.5

4.54.5

3.53.5

2.52.5

1.51.5

00

00 3.03.01.01.00.50.5 2.02.01.51.5 2.52.5

Rate of Inflation (X,%)

Y = 0.9954 + 1.1979X

Regression Line: All YearsShort-Term Interest Rate (Y,%)

We plot the residuals of this model in Exhibit 13 against the years. In this plot, 
we indicate the distance that is two standard deviations from zero (the mean of the 
residuals) for the first eight years’ residuals and then do the same for the second 
eight years. As you can see, the residuals appear different for the two regimes: the 
variation in the residuals for the first eight years is much smaller than the variation 
for the second eight years.

(8)
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Exhibit 13   Residual Plot for Interest Rates (Y) vs. Inflation Rates (X) Model

00

Residual (%)

1.0

0.60.6

0.80.8

0.40.4

0.20.2

–0.2–0.2

–0.4–0.4

–0.6–0.6

–0.8–0.8

–1.0–1.0

11 16165522 33 44 66 77 88 1010 1111 1212 1414 151599 1313

Year

2 Standard Deviations below the Zero

2 Standard Deviations above the Zero

Residuals Regime 1 Residuals Regime 2

Why does this happen? The model seems appropriate, but when we examine the 
residuals (Exhibit 13), an important step in assessing the model fit, we see that the 
model fits better in some years compared with others. The difference in variance of 
residuals between the two regimes is apparent from the much wider band around 
residuals for Regime 2 (the low- rate period). This indicates a clear violation of the 
homoskedasticity assumption.

If we estimate a regression line for each regime, we can see that the model for the 
two regimes is quite different, as we show in Exhibit 14. In the case of Regime 1 (nor-
mal rates), the slope is 1.0247, whereas in Regime 2 (low rates) the slope is −0.2805. 
In sum, the clustering of residuals in two groups with much different variances clearly 
indicates the existence of distinct regimes for the relationship between short- term 
interest rates and the inflation rate.

Exhibit 14   Fitted Regression Lines for the Two Regimes

Short-Term Interest Rate (Y,%)

5.05.0

4.04.0

3.03.0

2.02.0

1.01.0

0.50.5

4.54.5

3.53.5

2.52.5

1.51.5

00

00 3.03.01.01.00.50.5 2.02.01.51.5 2.52.5

Rate of Inflation (X,%)

Regime 2:
Y = 1.6440 – 0.2805X

Regime 1:
Y = 1.4372 + 1.0247X

Regime 1 Regression LineRegime 1

Regime 2 Regression LineRegime 2
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3.3 Assumption 3: Independence
We assume that the observations (Y and X pairs) are uncorrelated with one another, 
meaning they are independent. If there is correlation between observations (that is, 
autocorrelation), they are not independent and the residuals will be correlated. The 
assumption that the residuals are uncorrelated across observations is also necessary 
for correctly estimating the variances of the estimated parameters of b0  and b1 (i.e.,

b0  and b1) that we use in hypothesis tests of the intercept and slope, respectively. It 
is important to examine whether the residuals exhibit a pattern, suggesting a violation 
of this assumption. Therefore, we need to visually and statistically examine the resid-
uals for a regression model.

Consider the quarterly revenues of a company regressed over 40 quarters, as shown 
in Exhibit 15, with the regression line included. It is clear that these revenues display 
a seasonal pattern, an indicator of autocorrelation.

Exhibit 15   Regression of Quarterly Revenues vs. Time (40 Quarters)

Revenues (millions, €)(Y)

140,000

130,000130,000

120,000120,000

115,000115,000

110,000110,000

135,000135,000

125,000125,000

100,000100,000

95,00095,000

105,000105,000

90,00090,000

11 55 171733 1919 212177 2323 25251111 2727 37373535333331312929 3939151599 1313

Quarter (X)

Y = 108,502.3 + 609.6427

Observed Quarterly Revenues: 1st-3rd Quarters

Observed Quarterly Revenues: 4th Quarter

In Exhibit 16, we plot the residuals from this model and see that there is a pattern. 
These residuals are correlated, specifically jumping up in Quarter 4 and then falling 
back the subsequent quarter. In sum, the patterns in both Exhibits 15 and 16 indicate 
a violation of the assumption of independence.
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Exhibit 16   Residual Plot for Quarterly Revenues vs. Time Model

00

Residuals (millions, €)

15,000

10,00010,000

5,0005,000

–5,000–5,000

–10,000–10,000

11 55 171733 1919 212177 2323 25251111 2727 37373535333331312929 3939151599 1313

Quarter

Residuals: 1st-3rd Quarters Residuals: 4th Quarter

3.4 Assumption 4: Normality
The assumption of normality requires that the residuals be normally distributed. 
This does not mean that the dependent and independent variables must be normally 
distributed; it only means that the residuals from the model are normally distributed. 
However, in estimating any model, it is good practice to understand the distribution of 
the dependent and independent variables to explore for outliers. An outlier in either 
or both variables can substantially influence the fitted line such that the estimated 
model will not fit well for most of the other observations.

With normally distributed residuals, we can test a particular hypothesis about a 
linear regression model. For large sample sizes, we may be able to drop the assumption 
of normality by appealing to the central limit theorem; asymptotic theory (which deals 
with large samples) shows that in many cases, the test statistics produced by standard 
regression programs are valid even if the model’s residuals are not normally distributed.

EXAMPLE 4  

Assumptions of Simple Linear Regression
An analyst is investigating a company’s revenues and estimates a simple linear 
time- series model by regressing revenues against time, where time—1, 2, . . . , 
15—is measured in years. She plots the company’s observed revenues and the 
estimated regression line, as shown in Exhibit 17. She also plots the residuals 
from this regression model, as shown in Exhibit 18.
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Exhibit 17   Revenues vs. Time Using Simple Linear Regression

Revenues (millions, €)(Y)

900

700700

500500

400400

300300

800800

600600

100100

200200

00

11 553322 44 7766 88 11111010 14141212 151599 1313

Year (X)

Observed Revenues Linear Prediction of Revenues

Exhibit 18   Residual Plot for Revenues vs. Time

Revenues (millions, €)(Y)

150

100100

5050

–50–50

00

–100–100

11 553322 44 7766 88 11111010 14141212 151599 1313

Year (X)

Based on Exhibits 17 and 18, describe which assumption(s) of simple linear 
regression the analyst’s model may be violating.

Solution
The correct model is not linear, as evident from the pattern of the revenues in 
Exhibit 17. In the earlier years (i.e., 1 and 2) and later years (i.e., 14 and 15), 
the linear model underestimates revenues, whereas for the middle years (i.e., 
7–11), the linear model overestimates revenues. Moreover, the curved pattern 
of residuals in Exhibit 18 indicates potential heteroskedasticity (residuals have 
unequal variances), lack of independence of observations, and non- normality 
(a concern given the small sample size of n = 15). In sum, the analyst should be 
concerned that her model violates all the assumptions governing simple linear 
regression (linearity, homoskedasticity, independence, and normality).
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ANALYSIS OF VARIANCE

d calculate and interpret the coefficient of determination and the F-statistic in a 
simple linear regression

The simple linear regression model sometimes describes the relationship between 
two variables quite well, but sometimes it does not. We must be able to distinguish 
between these two cases to use regression analysis effectively. Remember our goal 
is to explain the variation of the dependent variable. So, how well has this goal been 
achieved, given our choice of independent variable?

4.1 Breaking down the Sum of Squares Total into Its 
Components
We begin with the sum of squares total and then break it down into two parts: the 
sum of squares error and the sum of squares regression (SSR). The sum of squares 
regression is the sum of the squared differences between the predicted value of the 
dependent variable, Y i , based on the estimated regression line, and the mean of the 
dependent variable, Y :

( ) .Y Yii
n

 ��� 2
1

We have already defined the sum of squares total, which is the total variation in 
Y, and the sum of squares error, the unexplained variation in Y. Note that the sum 
of squares regression is the explained variation in Y. So, as illustrated in Exhibit 19, 
SST = SSR + SSE, meaning total variation in Y equals explained variation in Y plus 
unexplained variation in Y.

Exhibit 19   Breakdown of Variation of Dependent Variable

Sum of Squares Total (SST)

(Yi – Y)2
i=1
n –Σ

Sum of Squares Error (SSE) 

(Yi – Y
i
)2

i=1
n ^Σ

Sum of Squares Regression (SSR)

(Yi – Y)2

i=1

n
–Σ ^

We show the breakdown of the sum of squares total formula for our ROA regres-
sion example in Exhibit 20. The total variation of ROA that we want to explain (SST) 
is 239.50. This number comprises the variation unexplained (SSE), 47.88, and the 
variation explained (SSR), 191.63. These sum of squares values are important inputs 
into measures of the fit of the regression line.

4

(9)
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Exhibit 20   Breakdown of Sum of Squares Total for ROA Model

Company
ROA 
(Yi)

CAPEX 
(Xi)

Predicted 
ROA 
( )Y

Variation 
to Be 

Explained 
Y Yi �� �2

Variation 
Unexplained 

Y Yi i�� �

2

Variation 
Explained 

Y Yi �� �2

A 6.0 0.7 5.750 42.25 0.063 45.563
B 4.0 0.4 5.375 72.25 1.891 50.766
C 15.0 5.0 11.125 6.25 15.016 1.891
D 20.0 10.0 17.375 56.25 6.891 23.766
E 10.0 8.0 14.875 6.25 23.766 5.641
F 20.0 12.5 20.500 56.25 0.250 64.000

239.50 47.88 191.625

Mean 12.50

Sum of squares total = 239.50.
Sum of squares error = 47.88.
Sum of squares regression = 191.63.

4.2 Measures of Goodness of Fit
There are several measures that we can use to evaluate goodness of fit—that is, how 
well the regression model fits the data. These include the coefficient of determination, 
the F-statistic for the test of fit, and the standard error of the regression.

The coefficient of determination, also referred to as the R-squared or R2, is the 
percentage of the variation of the dependent variable that is explained by the inde-
pendent variable:

Coefficient of determination = Sum of squares regression
Summ of squares total

Coefficient of determination = 
(Y Yii
 ��11

2

1
2

n

ii
n Y Y

�
� ��

)

( )
.

By construction, the coefficient of determination ranges from 0% to 100%. In our ROA 
example, the coefficient of determination is 191.625 ÷ 239.50, or 0.8001, so 80.01% of 
the variation in ROA is explained by CAPEX. In a simple linear regression, the square 
of the pairwise correlation is equal to the coefficient of determination:

r
Y

Y Y
R

Y
i
n

i
n

i

i2 1

2

1
2

2�
� �
� �

�

�

�
�

�

�
�



.

In our earlier ROA regression analysis, r = 0.8945, so we now see that r2 is indeed 
equal to the coefficient of determination (R2), since (0.8945)2 = 0.8001.

Whereas the coefficient of determination—the portion of the variation of the 
dependent variable explained by the independent variable—is descriptive, it is not a 
statistical test. To see if our regression model is likely to be statistically meaningful, 
we will need to construct an F-distributed test statistic.

(10)
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In general, we use an F-distributed test statistic to compare two variances. In 
regression analysis, we can use an F-distributed test statistic to test whether the 
slopes in a regression are equal to zero, with the slopes designated as bi, against the 
alternative hypothesis that at least one slope is not equal to zero:

H0: b1 = b2 = b3 =. . . = bk = 0.
Ha: At least one bk is not equal to zero.

For simple linear regression, these hypotheses simplify to
H0: b1 = 0.
Ha: b1 ≠ 0.

The F-distributed test statistic is constructed by using the sum of squares regression 
and the sum of squares error, each adjusted for degrees of freedom; in other words, it 
is the ratio of two variances. We divide the sum of squares regression by the number 
of independent variables, represented by k. In the case of a simple linear regression, 
k = 1, so we arrive at the mean square regression (MSR), which is the same as the 
sum of squares regression:

MSR Sum of squares regression
� �

���
k

Y Yii
n ( )

.


1
2

1
So, for simple linear regression,

MSR � ��� ( ) .Y Yii
n


1
2

Next, we calculate the mean square error (MSE), which is the sum of squares error 
divided by the degrees of freedom, which are n − k − 1. In simple linear regression, 
n − k − 1 becomes n − 2:

MSE Sum of squares error
�

� �n k 1
.

MSE �
�

�
�� ( )

.
Y Y

n
i ii

n


1
2

2
Therefore, the F-distributed test statistic (MSR/MSE) is

F k

n k

�

� �

�

Sum of squares regression

Sum of squares error
MSR
M

1
SSE

F

Y Y

Y

n

ii
n

i ii
n Y

�

�

�

�

�

�

�

�

( )

( )
,

�

�

2
1

2
1

1

2

which is distributed with 1 and n − 2 degrees of freedom in simple linear regression. 
The F-statistic in regression analysis is one sided, with the rejection region on the right 
side, because we are interested in whether the variation in Y explained (the numerator) 
is larger than the variation in Y unexplained (the denominator).

(11)

(12)
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4.3 ANOVA and Standard Error of Estimate in Simple Linear 
Regression

e describe the use of analysis of variance (ANOVA) in regression analysis, inter-
pret ANOVA results, and calculate and interpret the standard error of estimate 
in a simple linear regression

We often represent the sums of squares from a regression model in an analysis of 
variance (ANOVA) table, as shown in Exhibit 21, which presents the sums of squares, 
the degrees of freedom, the mean squares, and the F-statistic. Notice that the variance 
of the dependent variable is the ratio of the sum of squares total to n − 1.

Exhibit 21   Analysis of Variance Table for Simple Linear Regression

Source Sum of Squares
Degrees of 

Freedom Mean Square F-Statistic

Regression SSR � ��� ( )Y Yii
n



2
1 1 MSR �

��� ( )Y Yii
n



2
1

1  
F

Y Y

Y Y
n

ii
n

i ii
n� �

�

�

�

�

�

�

�
MSR
MSE

( )

( )





2
1

2
1

1

2  

Error SSE � ��� ( )Y Yi ii
n



2
1 n − 2 MSE �

�

�
�� ( )Y Y

n
i ii

n


2
1

2

Total SST � ��� ( )Y Yii
n 2

1 n − 1

From the ANOVA table, we can also calculate the standard error of the estimate 
(se), which is also known as the standard error of the regression or the root mean 
square error. The se is a measure of the distance between the observed values of the 
dependent variable and those predicted from the estimated regression; the smaller the 
se, the better the fit of the model. The se, along with the coefficient of determination 
and the F-statistic, is a measure of the goodness of the fit of the estimated regression 
line. Unlike the coefficient of determination and the F-statistic, which are relative 
measures of fit, the standard error of the estimate is an absolute measure of the 
distance of the observed dependent variable from the regression line. Thus, the se is 
an important statistic used to evaluate a regression model and is used in calculating 
prediction intervals and performing tests on the coefficients. The calculation of se is 
straightforward once we have the ANOVA table because it is the square root of the MSE:

Standard error of the estimate ( )
( )

.s
Y Y

ne
i ii

n

� �
�

�
��MSE



2
1

2
We show the ANOVA table for our ROA regression example in Exhibit 22, using 

the information from Exhibit 20. For a 5% level of significance, the critical F-value 
for the test of whether the model is a good fit (that is, whether the slope coefficient 
is different from zero) is 7.71. We can get this critical value in the following ways:

■■ Excel [F.INV(0.95,1,4)]
■■ R [qf(.95,1,4)]
■■ Python [from scipy.stats import f and f.ppf(.95,1,4)]

(14)
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With a calculated F-statistic of 16.0104 and a critical F-value of 7.71, we reject the 
null hypothesis and conclude that the slope of our simple linear regression model for 
ROA is different from zero.

Exhibit 22   ANOVA Table for ROA Regression Model

Source Sum of Squares
Degrees of 

Freedom Mean Square F-Statistic

Regression 191.625 1 191.625 16.0104

Error 47.875 4 11.96875

Total 239.50 5

The calculations to derive the ANOVA table and ultimately to test the goodness of 
fit of the regression model can be time consuming, especially for samples with many 
observations. However, statistical packages, such as SAS, SPSS Statistics, and Stata, 
as well as software, such as Excel, R, and Python, produce the ANOVA table as part 
of the output for regression analysis. 

EXAMPLE 5  

Using ANOVA Table Results to Evaluate a Simple Linear 
Regression
Suppose you run a cross- sectional regression for 100 companies, where the 
dependent variable is the annual return on stock and the independent variable 
is the lagged percentage of institutional ownership (INST). The results of this 
simple linear regression estimation are shown in Exhibit 23. Evaluate the model 
by answering the questions below.

Exhibit 23   ANOVA Table for Annual Stock Return Regressed on 
Institutional Ownership

Source Sum of Squares
Degrees of 

Freedom Mean Square

Regression 576.1485 1 576.1485
Error 1,873.5615 98 19.1180
Total 2,449.7100

1 What is the coefficient of determination for this regression model?
2 What is the standard error of the estimate for this regression model?
3 At a 5% level of significance, do we reject the null hypothesis of the slope 

coefficient equal to zero if the critical F-value is 3.938?
4 Based on your answers to the preceding questions, evaluate this simple 

linear regression model.
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Solutions

1 The coefficient of determination is sum of squares regression/sum of 
squares total: 576.148 ÷ 2,449.71 = 0.2352, or 23.52%.

2 The standard error of the estimate is the square root of the mean square 
error: 19 1180 4 3724. .= . 

3 Using a six- step process for testing hypotheses, we get the following:

Step 1 State the hypotheses. H0: b1 = 0 versus Ha: b1 ≠ 0
Step 2 Identify the appropriate test 

statistic. F =
MSR
MSE   

with 1 and 98 degrees of freedom.
Step 3 Specify the level of significance. α = 5% (one tail, right side).
Step 4 State the decision rule. Critical F-value = 3.938. 

Reject the null hypothesis if the calculated F-statistic is greater 
than 3.938.

Step 5 Calculate the test statistic.
F = =

576 1485
19 1180

30 1364.
.

.
 

Step 6 Make a decision. Reject the null hypothesis because the calculated F-statistic is 
greater than the critical F-value. There is sufficient evidence to 
indicate that the slope coefficient is different from 0.0.

4 The coefficient of determination indicates that variation in the indepen-
dent variable explains 23.52% of the variation in the dependent variable. 
Also, the F-statistic test confirms that the model’s slope coefficient is 
different from 0 at the 5% level of significance. In sum, the model seems to 
fit the data reasonably well.

HYPOTHESIS TESTING OF LINEAR REGRESSION 
COEFFICIENTS

f formulate a null and an alternative hypothesis about a population value of a 
regression coefficient, and determine whether the null hypothesis is rejected at 
a given level of significance

5.1 Hypothesis Tests of the Slope Coefficient
We can use the F-statistic to test for the significance of the slope coefficient (that is, 
whether it is significantly different from zero), but we also may want to perform other 
hypothesis tests for the slope coefficient—for example, testing whether the population 
slope is different from a specific value or whether the slope is positive. We can use 
a t-distributed test statistic to test such hypotheses about a regression coefficient.

Suppose we want to check a stock’s valuation using the market model; we hypoth-
esize that the stock has an average systematic risk (i.e., risk similar to that of the 
market), as represented by the coefficient on the market returns variable. Or we may 
want to test the hypothesis that economists’ forecasts of the inflation rate are unbiased 
(that is, on average, not overestimating or underestimating actual inflation rates). In 

5
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each case, does the evidence support the hypothesis? Such questions as these can be 
addressed with hypothesis tests on the regression slope. To test a hypothesis about a 
slope, we calculate the test statistic by subtracting the hypothesized population slope 
(B1) from the estimated slope coefficient ( b1) and then dividing this difference by the 
standard error of the slope coefficient, sb1

:

t b B
sb

�
�



1 1

1

.

This test statistic is t-distributed with n − k − 1 or n − 2 degrees of freedom because 
two parameters (an intercept and a slope) were estimated in the regression.

The standard error of the slope coefficient ( sb1
) for a simple linear regression 

is the ratio of the model’s standard error of the estimate (se) to the square root of the 
variation of the independent variable:

sb
e

ii
n

s

X X


1 2
1

�
��� ( )

.

We compare the calculated t-statistic with the critical values to test hypotheses. 
Note that the greater the variability of the independent variable, the lower the stan-
dard error of the slope (Equation 16) and hence the greater the calculated t-statistic 
(Equation 15). If the calculated t-statistic is outside the bounds of the critical t-values, 
we reject the null hypothesis, but if the calculated t-statistic is within the bounds of 
the critical values, we fail to reject the null hypothesis. Similar to tests of the mean, 
the alternative hypothesis can be two sided or one sided.

Consider our previous simple linear regression example with ROA as the dependent 
variable and CAPEX as the independent variable. Suppose we want to test whether 
the slope coefficient of CAPEX is different from zero to confirm our intuition of a 
significant relationship between ROA and CAPEX. We can test the hypothesis concern-
ing the slope using the six- step process, as we show in Exhibit 24. As a result of this 
test, we conclude that the slope is different from zero; that is, CAPEX is a significant 
explanatory variable of ROA.

Exhibit 24   Test of the Slope for the Regression of ROA on CAPEX

Step 1 State the hypotheses. H0: b1 = 0 versus Ha: b1 ≠ 0
Step 2 Identify the appropriate test 

statistic. t b B
sb

�
�



1 1

1   
with 6 − 2 = 4 degrees of freedom.

Step 3 Specify the level of significance. α = 5%.

(15)

(16)
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Step 4 State the decision rule. Critical t-values = ±2.776. 
We can determine this from
Excel 
          Lower: T.INV(0.025,4)
          Upper: T.INV(0.975,4)
R qt(c(.025,.975),4)
Python from scipy.stats import t 
          Lower: t.ppf(.025,4)
          Upper: t.ppf(.975,4)
We reject the null hypothesis if the calculated t-statistic is less than 
−2.776 or greater than +2.776.

Step 5 Calculate the test statistic. The slope coefficient is 1.25 (Exhibit 6). 
The mean square error is 11.96875 (Exhibit 22). 
The variation of CAPEX is 122.640 (Exhibit 6). 
se = =11 96875 3 459588. . .   

sb 1

3 459588
122 640

0 312398= =
.

.
. .  

t � �
�

1 25 0
0 312398

4 00131.
.

. .  

Step 6 Make a decision. Reject the null hypothesis of a zero slope. There is sufficient evidence 
to indicate that the slope is different from zero.

A feature of simple linear regression is that the t-statistic used to test whether 
the slope coefficient is equal to zero and the t-statistic to test whether the pairwise 
correlation is zero (that is, H0: ρ = 0 versus Ha: ρ ≠ 0) are the same value. Just as with 
a test of a slope, both two- sided and one- sided alternatives are possible for a test of a 
correlation—for example, H0: ρ ≤ 0 versus Ha: ρ > 0. The test- statistic to test whether 
the correlation is equal to zero is

t r n

r
�

�

�

2

1 2
.

In our example of ROA regressed on CAPEX, the correlation (r) is 0.8945. To test 
whether this correlation is different from zero, we perform a test of hypothesis, shown 
in Exhibit 25. As you can see, we draw a conclusion similar to that for our test of the 
slope, but it is phrased in terms of the correlation between ROA and CAPEX: There 
is a significant correlation between ROA and CAPEX.

Exhibit 25   Test of the Correlation between ROA and CAPEX

Step 1 State the hypotheses. H0: ρ = 0 versus Ha: ρ ≠ 0
Step 2 Identify the appropriate test 

statistic.

     

t r n

r
�

�

�

2

1 2
.

 
with 6 − 2 = 4 degrees of freedom.

Step 3 Specify the level of significance. α = 5%.
Step 4 State the decision rule. Critical t-values = ±2.776. 

Reject the null if the calculated t-statistic is less than −2.776 or greater 
than +2.776.

(continued)

Exhibit 24   (Continued)
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Step 5 Calculate the test statistic.

     
t �

�
�

0 8945 4
1 0 8001

4 00131.
.

. .
 

Step 6 Make a decision. Reject the null hypothesis of no correlation. There is sufficient evi-
dence to indicate that the correlation between ROA and CAPEX is 
different from zero.

Another interesting feature of simple linear regression is that the test- statistic 
used to test the fit of the model (that is, the F-distributed test statistic) is related to 
the calculated t-statistic used to test whether the slope coefficient is equal to zero: t2 
= F; therefore, 4.001312 = 16.0104. 

What if instead we want to test whether there is a one- to- one relationship between 
ROA and CAPEX, implying a slope coefficient of 1.0. The hypotheses become H0: b1 
= 1 and Ha: b1 ≠ 1. The calculated t-statistic is

t � �
�

1 25 1
0 312398

0 80026.
.

. .

This calculated test statistic falls within the bounds of the critical values, ±2.776, 
so we fail to reject the null hypothesis: There is not sufficient evidence to indicate 
that the slope is different from 1.0.

What if instead we want to test whether there is a positive slope or positive cor-
relation, as our intuition suggests? In this case, all the steps are the same as in Exhibits 
24 and 25 except the critical values because the tests are one sided. For a test of a 
positive slope or positive correlation, the critical value for a 5% level of significance is 
+2.132. We show the test of hypotheses for a positive slope and a positive correlation 
in Exhibit 26. Our conclusion is that there is sufficient evidence supporting both a 
positive slope and a positive correlation.

Exhibit 26   One- Sided Tests for the Slope and Correlation

Test of the Slope Test of the Correlation

Step 1 State the hypotheses. H0: b1 ≤ 0 versus Ha: b1 > 0 H0: ρ ≤ 0 versus Ha: ρ > 0
Step 2 Identify the appro-

priate test statistic. t b B
sb

�
�



1 1

1  
with 6 − 2 = 4 degrees of freedom.

     

t r n

r
�

�

�

2

1 2
.

 
with 6 − 2 = 4 degrees of freedom.

Step 3 Specify the level of 
significance.

α = 5%. α = 5%.

Step 4 State the decision 
rule.

Critical t-value = 2.132. 
Reject the null if the calculated t-sta-
tistic is greater than 2.132.

Critical t-value = 2.132. 
Reject the null if the calculated t-statistic 
is greater than 2.132.

Step 5 Calculate the test 
statistic.

     
t � �

�
1 25 0
0 312398

4 00131.
.

.
      

t �
�

�
0 8945 4
1 0 8001

4 00131.
.

.
 

Step 6 Make a decision. Reject the null hypothesis. There is 
sufficient evidence to indicate that the 
slope is greater than zero.

Reject the null hypothesis. There is 
sufficient evidence to indicate that the 
correlation is greater than zero.

Exhibit 25   (Continued)
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5.2 Hypothesis Tests of the Intercept
There are occasions when we want to test whether the population intercept is a spe-
cific value. As a reminder on how to interpret the intercept, consider the simple linear 
regression with a company’s revenue growth rate as the dependent variable (Y) and the 
GDP growth rate of its home country as the independent variable (X). The intercept 
is the company’s revenue growth rate if the GDP growth rate is 0%.

The equation for the standard error of the intercept, sb 0
, is

s
n

X

X Xb
ii

n

0

1 2

2
1

� �
��� ( )

.

We can test whether the intercept is different from the hypothesized value, B0, by 
comparing the estimated intercept ( b 0 ) with the hypothesized intercept and then 
dividing the difference by the standard error of the intercept:

t
b B

s
b B

n
X

X X

intercept
b

ii
n

�
�

�
�

�
���

 



0

0

00 0
2

2
1

1

( )

.

In the ROA regression example, the intercept is 4.875%. Suppose we want to test 
whether the intercept is greater than 3%. The one- sided hypothesis test is shown in 
Exhibit 27. As you can see, we reject the null hypothesis. In other words, there is 
sufficient evidence that if there are no capital expenditures (CAPEX = 0), ROA is 
greater than 3%.

Exhibit 27   Test of Hypothesis for Intercept for Regression of ROA on CAPEX

Step 1 State the hypotheses. H0: b0 ≤ 3% versus Ha: b0 > 3%
Step 2 Identify the appropriate test 

statistic. t
b B

sintercept
b

�
�



0

0

0

 
with 6 − 2 = 4 degrees of freedom.

Step 3 Specify the level of significance. α = 5%.
Step 4 State the decision rule. Critical t-value = 2.132. 

Reject the null if the calculated t-statistic is greater than 2.132.
Step 5 Calculate the test statistic.

     

tintercept �
�

�

� �
4 875 3 0

1
6

6 1
122 64

1 875
0 68562

2 73475
2

. .

.
.

.
.

.

Step 6 Make a decision. Reject the null hypothesis. There is sufficient evidence to indicate that 
the intercept is greater than 3%.

5.3 Hypothesis Tests of Slope When Independent Variable Is an 
Indicator Variable
Suppose we want to examine whether a company’s quarterly earnings announcements 
influence its monthly stock returns. In this case, we could use an indicator variable, 
or dummy variable, that takes on only the values 0 or 1 as the independent variable. 
Consider the case of a company’s monthly stock returns over a 30- month period. A 

(17)
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simple linear regression model for investigating this question would be monthly returns, 
RET, regressed on the indicator variable, EARN, that takes on a value of 0 if there is 
no earnings announcement that month and 1 if there is an earnings announcement:

RET EARNi i ib b� � �0 1 � .

This regression setup allows us to test whether there are different returns for 
earnings- announcement months versus non- earnings- announcement months. The 
observations and regression results are shown graphically in Exhibit 28.

Exhibit 28   Earnings Announcements, Dummy Variable, and Stock Returns

Monthly Return (%)

2.52.5

1.51.5

0.50.5

2.02.0

1.01.0

00

Month

Mean Return for Announcement Months

Mean Return for Non-Announcement Months

Returns for Months without AnnouncementsReturns for Announcement Months

11 55 171733 1919 212177 2323 25251111 272788664422 29291010 1818161614141212 2020 2828262624242222 3030151599 1313

Clearly there are some months in which the returns are different from other 
months, and these correspond to months in which there was an earnings announce-
ment. We estimate the simple linear regression model and perform hypothesis testing 
in the same manner as if the independent variable were a continuous variable. In a 
simple linear regression, the interpretation of the intercept is the predicted value of 
the dependent variable if the indicator variable is zero. Moreover, the slope, when the 
indicator variable is 1, is the difference in the means if we grouped the observations by 
the indicator variable. The results of the regression are given in Panel A of Exhibit 29.

Exhibit 29   Regression and Test of Differences Using an Indicator Variable

A. Regression Estimation Results

Estimated 
Coefficients

Standard Error of 
Coefficients

Calculated Test 
Statistic

Intercept 0.5629 0.0560 10.0596
EARN 1.2098 0.1158 10.4435

Degrees of freedom = 28.
Critical t-values = +2.0484 (5% significance).
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B. Test of Differences in Means

RET for Earnings- 
Announcement 

Months

RET for Non- 
Earnings- 

Announcement 
Months

Difference in 
Means

Mean 1.7727 0.5629 1.2098

Variance 0.1052 0.0630

Observations 7 23

Pooled variance 0.07202

Calculated test statistic 10.4435

Degrees of freedom = 28.
Critical t-values = +2.0484 (5% significance).

We can see the following from Panel A of Exhibit 29:

■■ The intercept (0.5629) is the mean of the returns for non- earnings- 
announcement months.

■■ The slope coefficient (1.2098) is the difference in means of returns between 
earnings- announcement and non- announcement months.

■■ We reject the null hypothesis that the slope coefficient on EARN is equal to 
zero. We also reject the null hypothesis that the intercept is zero. The reason is 
that in both cases, the calculated test statistic exceeds the critical t-value.

We could also test whether the mean monthly return is the same for both the 
non- earnings- announcement months and the earnings- announcement months by 
testing the following:

H HRETearnings RETNon earnings a RETearnings RETN0 : :� � � �� ��  and oon earnings�

The results of this hypothesis test are gleaned from Panel B of Exhibit 29. As you 
can see, we reject the null hypothesis that there is no difference in the mean RET for 
the earnings- announcement and non- earnings- announcements months at the 5% 
level of significance, since the calculated test statistic (10.4435) exceeds the critical 
value (2.0484).

5.4 Test of Hypotheses: Level of Significance and p-Values
The choice of significance level in hypothesis testing is always a matter of judgment. 
Analysts often choose the 0.05 level of significance, which indicates a 5% chance of 
rejecting the null hypothesis when, in fact, it is true (a Type I error, or false positive). 
Of course, decreasing the level of significance from 0.05 to 0.01 decreases the proba-
bility of Type I error, but it also increases the probability of Type II error—failing to 
reject the null hypothesis when, in fact, it is false (that is, a false negative).

The p-value is the smallest level of significance at which the null hypothesis can 
be rejected. The smaller the p-value, the smaller the chance of making a Type I error 
(i.e., rejecting a true null hypothesis), so the greater the likelihood the regression 
model is valid. For example, if the p-value is 0.005, we reject the null hypothesis that 
the true parameter is equal to zero at the 0.5% significance level (99.5% confidence). 
In most software packages, the p-values provided for regression coefficients are for a 
test of null hypothesis that the true parameter is equal to zero against the alternative 
that the parameter is not equal to zero.
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In our ROA regression example, the calculated t-statistic for the test of whether the 
slope coefficient is zero is 4.00131. The p-value corresponding to this test statistic is 
0.008, which means there is just a 0.8% chance of rejecting the null hypotheses when it 
is true. Comparing this p-value with the level of significance of 5% (and critical values 
of ±2.776) leads us to easily reject the null hypothesis of H0: b1 = 0. 

How do we determine the p-values? Since this is the area in the distribution out-
side the calculated test statistic, we need to resort to software tools. For the p-value 
corresponding to the t = 4.00131 from the ROA regression example, we could use 
the following:

■■ Excel 1- T.DIST(4.00131,4,TRUE))*2
■■ R (1- pt(4.00131,4))*2
■■ Python from scipy.stats import t and (1 - t.cdf(4.00131,4))*2

EXAMPLE 6  

Hypothesis Testing of Simple Linear Regression Results
An analyst is interested in interpreting the results of and performing tests of 
hypotheses for the market model estimation that regresses the daily return on 
ABC stock on the daily return on the fictitious Europe–Asia–Africa (EAA) 
Equity Index, his proxy for the stock market. He has generated the regression 
results presented in Exhibit 30.

Exhibit 30   Selected Results of Estimation of Market Model for ABC 
Stock

Standard error of the estimate (se) 1.26
Standard deviation of ABC stock returns 0.80
Standard deviation of EAA Equity Index returns 0.70
Number of observations 1,200

Coefficients
Intercept 0.010
Slope of EAA Equity Index returns 0.982

1 If the critical t-values are ±1.96 (at the 5% significance level), is the slope 
coefficient different from zero?

2 If the critical t-values are ±1.96 (at the 5% significance level), is the slope 
coefficient different from 1.0?

Solutions

1 First, we calculate the variation of the independent variable using the 
standard deviation of the independent variable:

i

n

i
i
n

i
X X

X X

n
n

�

��
�

�
�

�
�� �

� �
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1

2 1
2

1
1 .
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 So,

i

n

iX X
�
� � �� � � �

1

2 20 70 1199 587 51. , . .

 Next, the standard error of the estimated slope coefficient is

s
s

X X
b

e

ii
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 and the test statistic is

t b B
sb

�
�

�
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1 1

1

0 982 0
0 051983

18 89079.
.

.

 The calculated test statistic is outside the bounds of ±1.96, so we reject 
the null hypothesis of a slope coefficient equal to zero.

2 The calculated test statistic for the test of whether the slope coefficient is 
equal to 1.0 is

t �
�

� �
0 982 1
0 051983

0 3463
.
.

. .

 The calculated test statistic is within the bounds of ±1.96, so we fail to 
reject the null hypothesis of a slope coefficient equal to 1.0, which is evi-
dence that the true population slope may be 1.0.

PREDICTION USING SIMPLE LINEAR REGRESSION 
AND PREDICTION INTERVALS

g calculate and interpret the predicted value for the dependent variable, and a 
prediction interval for it, given an estimated linear regression model and a value 
for the independent variable

Financial analysts often want to use regression results to make predictions about a 
dependent variable. For example, we might ask, “How fast will the sales of XYZ 
Corporation grow this year if real GDP grows by 4%?” But we are not merely interested 
in making these forecasts; we also want to know how certain we can be about the 
forecasts’ results. A forecasted value of the dependent variable, Y f , is determined 
using the estimated intercept and slope, as well as the expected or forecasted inde-
pendent variable, Xf :

Y f b b X f
� � �� �0 1

In our ROA regression model, if we forecast a company’s CAPEX to be 6%, the 
forecasted ROA based on our estimated equation is 12.375%:

Y f � � � �� �4 875 1 25 6 12 375. . .

However, we need to consider that the estimated regression line does not describe 
the relation between the dependent and independent variables perfectly; it is an aver-
age of the relation between the two variables. This is evident because the residuals 
are not all zero.

6

(18)
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Therefore, an interval estimate of the forecast is needed to reflect this uncertainty. 
The estimated variance of the prediction error, s f

2 , of Y, given X, is

s s
n

X X

n s
s

n

X X

X
f e
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and the standard error of the forecast is

s s
n

X X

X X
f e

f

ii
n� � �

�

���
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2
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( )
.

The standard error of the forecast depends on

■■ the standard error of the estimate, se;
■■ the number of observations, n;
■■ the forecasted value of the independent variable, Xf, used to predict the depen-

dent variable and its deviation from the estimated mean, X ; and
■■ the variation of the independent variable.

We can see the following from the equation for the standard error of the forecast:

1 The better the fit of the regression model, the smaller the standard error of the 
estimate (se) and, therefore, the smaller standard error of the forecast.

2 The larger the sample size (n) in the regression estimation, the smaller the stan-
dard error of the forecast.

3 The closer the forecasted independent variable (Xf) is to the mean of the 
independent variable ( )X  used in the regression estimation, the smaller the 
standard error of the forecast.

Once we have this estimate of the standard error of the forecast, determining a 
prediction interval around the predicted value of the dependent variable ( )Y f  is very 
similar to estimating a confidence interval around an estimated parameter. The pre-
diction interval is

Y t sf critical for f
 �   � / .2

We outline the steps for developing the prediction interval in Exhibit 31.

(19)

(20)
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Exhibit 31   Creating a Prediction Interval around the Predicted Dependent 
Variable

Predict the value of Y, Yf, given the forecasted value of X, Xf
^

Choose a significance level, α, for the prediction interval

Determine the critical value for the prediction interval based on the degrees of 
freedom and the significance level

Compute the standard error of the forecast

Compute the (1 – α) percent prediction interval for the prediction as: Yf ± t critical for α/2 sf
^

For our ROA regression model, given that the forecasted value of CAPEX is 6.0, 
the predicted value of Y is 12.375:

Y Xf f
 � � � � �4 875 1 25 4 875 1 25 6 0 12 375. . . ( . . ) . .�

Assuming a 5% significance level (α), two sided, with n − 2 degrees of freedom (so, df 
= 4), the critical values for the prediction interval are ±2.776. 

The standard error of the forecast is

s f � �
�

��
� �

�3 459588 1
1
6

6 6 1
122 640

3 459588 1 166748 3 736912
2

.
.

.
. . . .

The 95% prediction interval then becomes
12 375 2 776 3 736912. . .� � �

12 375 10 3737. .±

2 0013 22 7487. .� �� �Y f

For our ROA regression example, we can see how the standard error of the forecast 
(sf) changes as our forecasted value of the independent variable gets farther from the 
mean of the independent variable ( )X Xf −  in Exhibit 32. The mean of CAPEX is 
6.1%, and the band that represents one standard error of the forecast, above and below 
the forecast, is minimized at that point and increases as the independent variable gets 
farther from X .
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Exhibit 32   ROA Forecasts and Standard Error of the Forecast

Forecasted ROA (%)
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EXAMPLE 7  

Predicting Net Profit Margin Using R&D Spending
Suppose we want to forecast a company’s net profit margin (NPM) based on 
its research and development expenditures scaled by revenues (RDR), using 
the model estimated in Example 2 and the details provided in Exhibit 8. The 
regression model was estimated using data on eight companies as

Y Xf f
 � �16 5 1 3. . ,

with a standard error of the estimate (se) of 1.8618987 and variance of 

RDR, 
( )

( )

X X

n
ii

n �

�
�� 1

2

1
, of 4.285714, as given.

1 What is the predicted value of NPM if the forecasted value of RDR is 5?
2 What is the standard error of the forecast (sf) if the forecasted value of 

RDR is 5?
3 What is the 95% prediction interval for the predicted value of NPM using 

critical t-values (df = 6) of ±2.447?
4 What is the predicted value of NPM if the forecasted value of RDR is 15?
5 What is the standard error of the forecast if the forecasted value of RDR is 

15?
6 What is the 95% prediction interval for the predicted value of NPM using 

critical t-values (df = 6) of ±2.447?
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Solutions

1 The predicted value of NPM is 10: 16.5 − (1.3 × 5) = 10.
2 To derive the standard error of the forecast (sf), we first have to calculate 

the variation of RDR. Then, we have the all the pieces to calculate sf :

i

n

iX X
�
� �� � � � �

1

2 4 285714 7 30. .

s f � � �
�

�1 8618987 1 1
8

5 7 5
30

2 1499
2

. ( . ) . .

3 The 95% prediction interval for the predicted value of NPM is

10 2 447 2 1499� � �� �. .

4 7392 15 2608. .� �� �Y f

4 The predicted value of NPM is −3: 16.5 − (1.3 × 15) = −3.
5 To derive the standard error of the forecast, we first must calculate the 

variation of RDR. Then, we can calculate sf:

i

n

iX X
�
� �� � � � �

1

2 4 285714 7 30. .

s f � � �
�� �

�1 8618987 1 1
8

15 7 5
30

3 2249
2

.
.

. .

6 The 95% prediction interval for the predicted value of NPM is

� � � �� �3 2 447 3 2249. .

� � �� �10 8913 4 8913. .Y f

FUNCTIONAL FORMS FOR SIMPLE LINEAR 
REGRESSION

h describe different functional forms of simple linear regressions

Not every set of independent and dependent variables has a linear relation. In fact, 
we often see non- linear relationships in economic and financial data. Consider the 
revenues of a company over time illustrated in Exhibit 33, with revenues as the depen-
dent (Y) variable and time as the independent (X) variable. Revenues grow at a rate 
of 15% per year for several years, but then the growth rate eventually declines to just 
5% per year. Estimating this relationship as a simple linear model would understate 
the dependent variable, revenues, for some ranges of the independent variable, time, 
and would overstate it for other ranges of the independent variable.

7

© CFA Institute. For candidate use only. Not for distribution.



Reading 7 ■ Introduction to Linear Regression468

Exhibit 33   Company Revenues over Time

Revenues (Y)
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–500–500

11 101044 77 1313 1616 22221919 2525 2828

Y = –287.61 + 76.578 X
R2 = 0.9478
F–statistic = 508.9017

Time (X)

Linear Prediction of YObserved Y

We can still use the simple linear regression model, but we need to modify either 
the dependent or the independent variables to make it work well. This is the case 
with many different financial or economic data that you might use as dependent and 
independent variables in your regression analysis.

There are several different functional forms that can be used to potentially transform 
the data to enable their use in linear regression. These transformations include using 
the log (i.e., natural logarithm) of the dependent variable, the log of the independent 
variable, the reciprocal of the independent variable, the square of the independent 
variable, or the differencing of the independent variable. We illustrate and discuss 
three often- used functional forms, each of which involves log transformation:

1 the log- lin model, in which the dependent variable is logarithmic but the inde-
pendent variable is linear;

2 the lin- log model, in which the dependent variable is linear but the indepen-
dent variable is logarithmic; and

3 the log- log model, where both the dependent and independent variables are in 
logarithmic form.

7.1 The Log- Lin Model
In the log- lin model, the dependent variable is in logarithmic form and the indepen-
dent variable is not, as follows:

ln .Y b b Xi i� �0 1

The slope coefficient in this model is the relative change in the dependent variable 
for an absolute change in the independent variable. We can transform the Y variable 
(revenues) in Exhibit 33 into its natural log (ln) and then fit the regression line, as we 
show in Exhibit 34. From this chart, we see that the log- lin model is a better fitting 
model than the simple linear regression model.

(21)
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Exhibit 34   Log- Lin Model Applied to Company Revenues over Time

Ln Revenues (Ln Y)
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22

11
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LnY = 4.7932 + 0.1087 X
R2 = 0.9808
F–statistic = 1429.5473

Time (X)

Log-Lin Prediction of YLn Y

It is important to note that in working with a log- lin model, you must take care 
when making a forecast. For example, suppose the estimated regression model is ln Y = 
−7 + 2X. If X is 2.5%, then the forecasted value of ln Y is −2. In this case, the predicted 
value of Y is the antilog of −2, or e−2 = 0.135335. Another caution is that you cannot 
directly compare a log- lin model with a lin- lin model (that is, the regression of Y on 
X without any transformation) because the dependent variables are not in the same 
form − we would have to transform the R2 and F-statistic to enable a comparison. 
However, looking at the residuals is helpful.

7.2 The Lin- Log Model
The lin- log model is similar to the log- lin model, but only the independent variable 
is in logarithmic form:

Yi = b0 + b1 lnXi,

The slope coefficient in this regression model provides the absolute change in the 
dependent variable for a relative change in the independent variable.

Suppose an analyst is examining the cross- sectional relationship between operating 
profit margin, the dependent variable (Y), and unit sales, the independent variable 
(X), and gathers data on a sample of 30 companies. The scatter plot and regression 
line for these observations are shown in Exhibit 35. Although the slope is different 
from zero at the 5% level (the calculated t-statistic on the slope is 5.8616, compared 
with critical t-values of ±2.048), given the R2 of 55.10%, the issue is whether we can 
get a better fit by using a different functional form.

(22)
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Exhibit 35   Relationship between Operating Profit Margin and Unit Sales

Operating Profit Margin (Y)
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1212

1010
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00 50,00050,000 100,000100,000 150,000150,000

Y = 10.3665 + 0.000045X
R2 = 0.5510
Se = 2.2528
F–statistic = 33.8259

Unit Sales (X)

Regression LineOperating Profit Margin

If instead we use the natural log of the unit sales as the independent variable in our 
model, we get a very different picture, as shown in Exhibit 36. The R2 for the model 
of operating profit margin regressed on the natural log of unit sales jumps to 97.17%. 
Since the dependent variable is the same in both the original and transformed models, 
we can compare the standard error of the estimate: 2.2528 with the original indepen-
dent variable and a much lower 0.5629 with the transformed independent variable. 
Clearly the log- transformed explanatory variable has resulted in a better fitting model.

Exhibit 36   Relationship Between Operating Profit Margin and Natural 
Logarithm of Unit Sales

Operating Profit Margin (Y)
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Y = 2.6286 + 1.1797 LnX
R2 = 0.9717
Se = 0.5659
F–statistic = 960.1538

Ln of Unit Sales (Ln X)

Lin-Log Regression LineOperating Profit Margin

7.3 The Log- Log Model
The log- log model, in which both the dependent variable and the independent vari-
able are linear in their logarithmic forms, is also referred to as the double- log model.

ln Yi = b0 + b1 ln Xi. (23)
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This model is useful in calculating elasticities because the slope coefficient is the 
relative change in the dependent variable for a relative change in the independent vari-
able. Consider a cross- sectional model of company revenues (the Y variable) regressed 
on advertising spending as a percentage of selling, general, and administrative expenses, 
ADVERT (the X variable). As shown in Exhibit 37, a simple linear regression model 
results in a shallow regression line, with a coefficient of determination of just 20.89%.

Exhibit 37   Fitting a Linear Relation Between Revenues and Advertising 
Spending

Revenues (Y)

5,0005,000

4,5004,500

4,0004,000

3,5003,500

3,0003,000

2,0002,000

1,5001,500
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500500

2,5002,500

00

00 4.04.01.01.0 2.02.0 3.03.00.50.5 1.51.5 2.52.5 3.53.5

Advertising as a Percentage of SG&A  (%, X)

Regression LineRevenues

Y = 70.7139 + 475.3665 X
R2 = 0.2089
F–statistic = 7.3924

However, if instead we use the natural logarithms of both the revenues and 
ADVERT, we get a much different picture of this relationship. As shown in Exhibit 38, 
the estimated regression line has a significant positive slope; the log- log model’s R2 
increases by more than four times, from 20.89% to 84.91%; and the F-statistic jumps 
from 7.39 to 157.52. So, using the log- log transformation dramatically improves the 
regression model fit relative to our data.
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Exhibit 38   Fitting a Log- Log Model of Revenues and Advertising Spending

Ln Revenues (Ln Y)
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Ln Advertising as a Percentage of SG&A  (Ln X)

Log-Log Regression LineNatural Log of Revenues

LnY = 5.3109 + 1.3686 LnX
R2 = 0.8491
F–statistic = 157.5208

7.4 Selecting the Correct Functional Form
The key to fitting the appropriate functional form of a simple linear regression is 
examining the goodness of fit measures—the coefficient of determination (R2), the 
F-statistic, and the standard error of the estimate (se)—as well as examining whether 
there are patterns in the residuals. In addition to fit statistics, most statistical pack-
ages provide plots of residuals as part of the regression output, which enables you to 
visually inspect the residuals. To reiterate an important point, what you want to see 
in these plots is random residuals.

As an example, consider the relationship between the monthly returns on DEF 
stock and the monthly returns of the EAA Equity Index, as depicted in Panel A of 
Exhibit 39, with the regression line indicated. Using the equation for this regression 
line, we calculate the residuals and plot them against the EAA Equity Index, as shown 
in Panel B of Exhibit 39. The residuals appear to be random, bearing no relation to the 
independent variable. The distribution of the residuals, shown in Panel C of Exhibit 39, 
shows that the residuals are approximately normal. Using statistical software, we can 
investigate further by examining the distribution of the residuals, including using a 
normal probability plot or statistics to test for normality of the residuals.
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Exhibit 39   Monthly Returns on DEF Stock Regressed on Returns on the EAA 
Index

Return on DEF Stock (%)

A. Scatterplot of Returns on DEF Stock and Return on the EAA Index
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B. Scatterplot of Residuals and the Returns on the EAA Index
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EXAMPLE 8  

Comparing Functional Forms
An analyst is investigating the relationship between the annual growth in con-
sumer spending (CONS) in a country and the annual growth in the country’s 
GDP (GGDP). The analyst estimates the following two models:

Model 1 Model 2

GGDP CONSi i ib b� � �0 1 � GGDP ln CONSi i ib b� � �0 1 ( ) �

Intercept 1.040 1.006
Slope 0.669 1.994
R2 0.788 0.867
Standard error of 
the estimate

0.404 0.320

F- statistic 141.558 247.040

1 Identify the functional form used in these models.
2 Explain which model has better goodness- of- fit with the sample data.

Solution

1 Model 1 is the simple linear regression with no variable transformation, 
whereas Model 2 is a lin- log model with the natural log of the variable 
CONS as the independent variable.

2 The lin- log model, Model 2, fits the data better. Since the dependent vari-
able is the same for the two models, we can compare the fit of the models 
using either the relative measures (R2 or F-statistic) or the absolute mea-
sure of fit, the standard error of the estimate. The standard error of the 
estimate is lower for Model 2, whereas the R2 and F-statistic are higher for 
Model 2 compared with Model 1.

SUMMARY

■■ The dependent variable in a linear regression is the variable whose variability 
the regression model tries to explain. The independent variable is the variable 
whose variation the researcher uses to explain the variation of the dependent 
variable.

■■ If there is one independent variable in a linear regression and there are n 
observations of the dependent and independent variables, the regression model 
is Yi = b0 + b1Xi + εi, i = 1, . . . , n, where Yi is the dependent variable, Xi is the 
independent variable, and εi is the error term. In this model, the coefficients b0  
and b1 are the population intercept and slope, respectively.
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■■ The intercept is the expected value of the dependent variable when the inde-
pendent variable has a value of zero. The slope coefficient is the estimate of the 
population slope of the regression line and is the expected change in the depen-
dent variable for a one- unit change in the independent variable.

■■ The assumptions of the classic simple linear regression model are as follows:
■● Linearity: A linear relation exists between the dependent variable and the 

independent variable.
■● Homoskedasticity: The variance of the error term is the same for all 

observations.
■● Independence: The error term is uncorrelated across observations.
■● Normality: The error term is normally distributed.

■■ The estimated parameters in a simple linear regression model minimize the sum 
of the squared errors.

■■ The coefficient of determination, or R2, measures the percentage of the total 
variation in the dependent variable explained by the independent variable.

■■ To test the fit of the simple linear regression, we can calculate an F-distributed 
test statistic and test the hypotheses H0: b1 = 0 versus Ha: b1 ≠ 0, with 1 and n − 
2 degrees of freedom.

■■ The standard error of the estimate is an absolute measure of the fit of the model 
calculated as the square root of the mean square error.

■■ We can evaluate a regression model by testing whether the population value of 
a regression coefficient is equal to a particular hypothesized value. We do this 
by calculating a t-distributed test statistic that compares the estimated param-
eter with the hypothesized parameter, dividing this difference by the standard 
error of the coefficient.

■■ An indicator (or dummy) variable takes on only the values 0 or 1 and can be 
used as the independent variable in a simple linear regression. In such a model, 
the interpretation of the intercept is the predicted value of the dependent vari-
able if the indicator variable is 0, and when the indicator variable is 1, the slope 
is the difference in the means if we grouped the observations by the indicator 
variable.

■■ We calculate a prediction interval for a regression coefficient using the esti-
mated coefficient, the standard error of the estimated coefficient, and the criti-
cal value for the t-distributed test statistic based on the level of significance and 
the appropriate degrees of freedom, which are n − 2 for simple regression.

■■ We can make predictions for the dependent variable using an estimated linear 
regression by inserting the forecasted value of the independent variable into the 
estimated model.

■■ The standard error of the forecast is the product of the standard error of the 
estimate and a term that reflects the sample size of the regression, the variation 
of the independent variable, and the deviation between the forecasted value 
of the independent variable and the mean of the independent variable in the 
regression.
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■■ The prediction interval for a particular forecasted value of the dependent 
variable is formed by using the forecasted value of the dependent variable and 
extending above and below this value a quantity that reflects the critical t-value 
corresponding to the degrees of freedom, the level of significance, and the stan-
dard error of the forecast.

■■ If the relationship between the independent variable and the dependent vari-
able is not linear, we can often transform one or both of these variables to 
convert this relation to a linear form, which then allows the use of simple linear 
regression.
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PRACTICE PROBLEMS

1 Julie Moon is an energy analyst examining electricity, oil, and natural gas con-
sumption in different regions over different seasons. She ran a simple regression 
explaining the variation in energy consumption as a function of temperature. 
The total variation of the dependent variable was 140.58, and the explained 
variation was 60.16. She had 60 monthly observations.
A Calculate the coefficient of determination.
B Calculate the F-statistic to test the fit of the model.
C Calculate the standard error of the estimate of the regression estimation.
D Calculate the sample standard deviation of monthly energy consumption.

2 Homoskedasticity is best described as the situation in which the variance of the 
residuals of a regression is:
A zero.
B normally distributed.
C constant across observations.

The following information relates to Questions 
3–6
An analyst is examining the annual growth of the money supply for a country over 
the past 30 years. This country experienced a central bank policy shift 15 years ago, 
which altered the approach to the management of the money supply. The analyst 
estimated a model using the annual growth rate in the money supply regressed on 
the variable (SHIFT) that takes on a value of 0 before the policy shift and 1 after. She 
estimated the following:

Coefficients Standard Error t-Stat.

Intercept 5.767264 0.445229 12.95348
SHIFT −5.13912 0.629649 −8.16188

Critical t-values, level of significance of 0.05:
One- sided, left side: −1.701
One- sided, right side: +1.701
Two- sided: ±2.048

3 The variable SHIFT is best described as:
A an indicator variable.
B a dependent variable.
C a continuous variable.

4 The interpretation of the intercept is the mean of the annual growth rate of the 
money supply:
A over the enter entire period.

© 2019 CFA Institute. All rights reserved.
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B after the shift in policy.
C before the shift in policy.

5 The interpretation of the slope is the:
A change in the annual growth rate of the money supply per year.
B average annual growth rate of the money supply after the shift in policy.
C difference in the average annual growth rate of the money supply from 

before to after the shift in policy.
6 Testing whether there is a change in the money supply growth after the shift in 

policy, using a 0.05 level of significance, we conclude that there is:
A sufficient evidence that the money supply growth changed.
B not enough evidence that the money supply growth is different from zero.
C not enough evidence to indicate that the money supply growth changed.

7 You are examining the results of a regression estimation that attempts to 
explain the unit sales growth of a business you are researching. The analysis of 
variance output for the regression is given in the following table. The regression 
was based on five observations (n = 5).

Source df
Sum of 

Squares
Mean 

Square F p-Value

Regression 1 88.0 88.0 36.667 0.00904
Residual 3 7.2 2.4

Total 4 95.2

A Calculate the sample variance of the dependent variable using information 
in the table.

B Calculate the coefficient of determination for this estimated model.
C What hypothesis does the F-statistic test?
D Is the F-test significant at the 0.05 significance level?
E Calculate the standard error of the estimate.

8 An economist collected the monthly returns for KDL’s portfolio and a diversi-
fied stock index. The data collected are shown in the following table:

Month Portfolio Return (%) Index Return (%)

1 1.11 −0.59
2 72.10 64.90
3 5.12 4.81
4 1.01 1.68
5 −1.72 −4.97
6 4.06 −2.06

 The economist calculated the correlation between the two returns and found it 
to be 0.996. The regression results with the KDL return as the dependent vari-
able and the index return as the independent variable are given as follows:
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Regression Statistics

R2 0.9921

Standard error 2.8619

Observations 6

Source df
Sum of 

Squares
Mean 

Square F p-Value

Regression 1 4,101.6205 4,101.6205 500.7921 0.0000
Residual 4 32.7611 8.1903

Total 5 4,134.3815

Coefficients Standard Error t-Statistic p-Value

Intercept 2.2521 1.2739 1.7679 0.1518
Index return (%) 1.0690 0.0478 22.3784 0.0000

 When reviewing the results, Andrea Fusilier suspected that they were unreli-
able. She found that the returns for Month 2 should have been 7.21% and 6.49%, 
instead of the large values shown in the first table. Correcting these values 
resulted in a revised correlation of 0.824 and the following revised regression 
results:

Regression Statistics

R2 0.6784

Standard error 2.0624

Observations 6

Source df
Sum of 

Squares
Mean 

Square F p-Value

Regression 1 35.8950 35.8950 8.4391 0.044
Residual 4 17.0137 4.2534

Total 5 52.91

Coefficients Standard Error t-Statistic p-Value

Intercept 2.2421 0.8635 2.5966 0.060
Slope 0.6217 0.2143 2.9050 0.044

 Explain how the bad data affected the results.
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The following information relates to Questions 
9–12
Kenneth McCoin, CFA, is a challenging interviewer. Last year, he handed each job 
applicant a sheet of paper with the information in the following table, and he then 
asked several questions about regression analysis. Some of McCoin’s questions, along 
with a sample of the answers he received to each, are given below. McCoin told the 
applicants that the independent variable is the ratio of net income to sales for restau-
rants with a market cap of more than $100 million and the dependent variable is the 
ratio of cash flow from operations to sales for those restaurants. Which of the choices 
provided is the best answer to each of McCoin’s questions?

Regression Statistics

R2 0.7436

Standard error 0.0213

Observations 24

Source df
Sum of 

Squares
Mean 

Square F p-Value

Regression 1 0.029 0.029000 63.81 0
Residual 22 0.010 0.000455

Total 23 0.040

Coefficients Standard Error t-Statistic p-Value

Intercept 0.077 0.007 11.328 0
Net income 
to sales (%)

0.826 0.103 7.988 0

9 The coefficient of determination is closest to:
A 0.7436.
B 0.8261.
C 0.8623.

10 The correlation between X and Y is closest to:
A −0.7436.
B 0.7436.
C 0.8623.

11 If the ratio of net income to sales for a restaurant is 5%, the predicted ratio of 
cash flow from operations (CFO) to sales is closest to:
A −4.054.
B 0.524.
C 4.207.

12 Is the relationship between the ratio of cash flow to operations and the ratio of 
net income to sales significant at the 0.05 level?
A No, because the R2 is greater than 0.05

© CFA Institute. For candidate use only. Not for distribution.



Practice Problems 481

B No, because the p-values of the intercept and slope are less than 0.05
C Yes, because the p-values for F and t for the slope coefficient are less than 

0.05

The following information relates to Questions 
13–17
Howard Golub, CFA, is preparing to write a research report on Stellar Energy Corp. 
common stock. One of the world’s largest companies, Stellar is in the business of 
refining and marketing oil. As part of his analysis, Golub wants to evaluate the 
sensitivity of the stock’s returns to various economic factors. For example, a client 
recently asked Golub whether the price of Stellar Energy Corp. stock has tended to 
rise following increases in retail energy prices. Golub believes the association between 
the two variables is negative, but he does not know the strength of the association.

Golub directs his assistant, Jill Batten, to study the relationships between (1) Stellar 
monthly common stock returns and the previous month’s percentage change in the US 
Consumer Price Index for Energy (CPIENG) and (2) Stellar monthly common stock 
returns and the previous month’s percentage change in the US Producer Price Index 
for Crude Energy Materials (PPICEM). Golub wants Batten to run both a correlation 
and a linear regression analysis. In response, Batten compiles the summary statistics 
shown in Exhibit 1 for 248 months. All the data are in decimal form, where 0.01 indi-
cates a 1% return. Batten also runs a regression analysis using Stellar monthly returns 
as the dependent variable and the monthly change in CPIENG as the independent 
variable. Exhibit 2 displays the results of this regression model.

Exhibit 1   Descriptive Statistics

Stellar Common 
Stock Monthly 

Return

Lagged Monthly 
Change

CPIENG PPICEM

Mean 0.0123 0.0023 0.0042
Standard deviation 0.0717 0.0160 0.0534

Covariance, Stellar vs. CPIENG −0.00017

Covariance, Stellar vs. PPICEM −0.00048

Covariance, CPIENG vs. PPICEM 0.00044

Correlation, Stellar vs. CPIENG −0.1452

Exhibit 2   Regression Analysis with CPIENG

Regression Statistics

R2 0.0211

Standard error of the estimate 0.0710

Observations 248

(continued)

© CFA Institute. For candidate use only. Not for distribution.



Reading 7 ■ Introduction to Linear Regression482

Regression Statistics

Coefficients Standard Error t-Statistic
Intercept 0.0138 0.0046 3.0275
CPIENG (%) −0.6486 0.2818 −2.3014

Critical t-values
One- sided, left side: −1.651
One- sided, right side: +1.651
Two- sided: ±1.967

13 Which of the following best describes Batten’s regression?
A Time- series regression
B Cross- sectional regression
C Time- series and cross- sectional regression

14 Based on the regression, if the CPIENG decreases by 1.0%, the expected return 
on Stellar common stock during the next period is closest to:
A 0.0073 (0.73%).
B 0.0138 (1.38%).
C 0.0203 (2.03%).

15 Based on Batten’s regression model, the coefficient of determination indicates 
that:
A Stellar’s returns explain 2.11% of the variability in CPIENG.
B Stellar’s returns explain 14.52% of the variability in CPIENG.
C changes in CPIENG explain 2.11% of the variability in Stellar’s returns.

16 For Batten’s regression model, 0.0710 is the standard deviation of:
A the dependent variable.
B the residuals from the regression.
C the predicted dependent variable from the regression.

17 For the analysis run by Batten, which of the following is an incorrect conclusion 
from the regression output?
A The estimated intercept from Batten’s regression is statistically different 

from zero at the 0.05 level of significance.
B In the month after the CPIENG declines, Stellar’s common stock is expected 

to exhibit a positive return.
C Viewed in combination, the slope and intercept coefficients from Batten’s 

regression are not statistically different from zero at the 0.05 level of 
significance.

Exhibit 2   (Continued)
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The following information relates to Questions 
18–26
Anh Liu is an analyst researching whether a company’s debt burden affects investors’ 
decision to short the company’s stock. She calculates the short interest ratio (the ratio 
of short interest to average daily share volume, expressed in days) for 50 companies as 
of the end of 2016 and compares this ratio with the companies’ debt ratio (the ratio 
of total liabilities to total assets, expressed in decimal form).

Liu provides a number of statistics in Exhibit 1. She also estimates a simple regres-
sion to investigate the effect of the debt ratio on a company’s short interest ratio. The 
results of this simple regression, including the analysis of variance (ANOVA), are 
shown in Exhibit 2.

In addition to estimating a regression equation, Liu graphs the 50 observations 
using a scatter plot, with the short interest ratio on the vertical axis and the debt ratio 
on the horizontal axis.

Exhibit 1   Summary Statistics

Statistic
Debt Ratio 

Xi

Short Interest Ratio 
Yi

Sum 19.8550 192.3000

Sum of squared deviations 
from the mean

X Xi
i

n
�� � �

�
� 2

1
2 2225. . Y Yi

i

n
�� � �

�
� 2

1
412 2042. .

Sum of cross- products of 
deviations from the mean

X X Y Yi i
i

n
�� � �� � � �

�
�

1
9 2430. .

Exhibit 2   Regression of the Short Interest Ratio on the Debt Ratio

ANOVA
Degrees of 

Freedom (df) Sum of Squares Mean Square

Regression 1 38.4404 38.4404
Residual 48 373.7638 7.7867
Total 49 412.2042

Regression Statistics
R2 0.0933

Standard error of 
estimate

2.7905

Observations 50

Coefficients Standard Error t-Statistic

Intercept 5.4975 0.8416 6.5322
Debt ratio (%) −4.1589 1.8718 −2.2219
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Critical t-values for a 0.05 level of significance:
One- sided, left side: −1.677
One- sided, right side: +1.677
Two- sided: ±2.011

Liu is considering three interpretations of these results for her report on the rela-
tionship between debt ratios and short interest ratios:

Interpretation 1 Companies’ higher debt ratios cause lower short interest 
ratios.

Interpretation 2 Companies’ higher short interest ratios cause higher debt 
ratios.

Interpretation 3 Companies with higher debt ratios tend to have lower short 
interest ratios.

She is especially interested in using her estimation results to predict the short 
interest ratio for MQD Corporation, which has a debt ratio of 0.40.

18 Based on Exhibits 1 and 2, if Liu were to graph the 50 observations, the scatter 
plot summarizing this relation would be best described as:
A horizontal.
B upward sloping.
C downward sloping.

19 Based on Exhibit 1, the sample covariance is closest to:
A −9.2430.
B −0.1886.
C 8.4123.

20 Based on Exhibits 1 and 2, the correlation between the debt ratio and the short 
interest ratio is closest to:
A −0.3054.
B 0.0933.
C 0.3054.

21 Which of the interpretations best describes Liu’s findings?
A Interpretation 1
B Interpretation 2
C Interpretation 3

22 The dependent variable in Liu’s regression analysis is the:
A intercept.
B debt ratio.
C short interest ratio.

23 Based on Exhibit 2, the degrees of freedom for the t-test of the slope coefficient 
in this regression are:
A 48.
B 49.
C 50.

24 Which of the following should Liu conclude from the results shown in 
Exhibit 2?
A The average short interest ratio is 5.4975.
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B The estimated slope coefficient is different from zero at the 0.05 level of 
significance.

C The debt ratio explains 30.54% of the variation in the short interest ratio.
25 Based on Exhibit 2, the short interest ratio expected for MQD Corporation is 

closest to:
A 3.8339.
B 5.4975.
C 6.2462.

26 Based on Liu’s regression results in Exhibit 2, the F-statistic for testing whether 
the slope coefficient is equal to zero is closest to:
A −2.2219.
B 3.5036.
C 4.9367.

The following information relates to Questions 
27–31
Elena Vasileva recently joined EnergyInvest as a junior portfolio analyst. Vasileva’s 
supervisor asks her to evaluate a potential investment opportunity in Amtex, a mul-
tinational oil and gas corporation based in the United States. Vasileva’s supervisor 
suggests using regression analysis to examine the relation between Amtex shares and 
returns on crude oil.

Vasileva notes the following assumptions of regression analysis:

Assumption 1 The error term is uncorrelated across observations.
Assumption 2 The variance of the error term is the same for all observations.
Assumption 3 The dependent variable is normally distributed.

Vasileva runs a regression of Amtex share returns on crude oil returns using the 
monthly data she collected. Selected data used in the regression are presented in 
Exhibit 1, and selected regression output is presented in Exhibit 2. She uses a 1% level 
of significance in all her tests.

Exhibit 1   Selected Data for Crude Oil Returns and Amtex Share Returns

Oil Return 
(Xi)

Amtex Return 
(Yi)

Cross- Product 
X X Y Yi i�� � �� �

Predicted 
Amtex Return 

Y i

Regression 
Residual 

Y Yi i− 

Squared 
Residual 

Y Yi i�� �

2

Month 1 −0.032000 0.033145 −0.000388 0.002011 −0.031134 0.000969

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Month 36 0.028636 0.062334 0.002663 0.016282 −0.046053 0.002121
Sum 0.085598 0.071475

Average −0.018056 0.005293
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Exhibit 2   Selected Regression Output, Dependent 
Variable: Amtex Share Return

Coefficient Standard Error

Intercept 0.0095 0.0078
Oil return 0.2354 0.0760

Critical t-values for a 1% level of significance:
One- sided, left side: −2.441
One- sided, right side: +2.441
Two- sided: ±2.728

Vasileva expects the crude oil return next month, Month 37, to be −0.01. She 
computes the standard error of the forecast to be 0.0469.

27 Which of Vasileva’s assumptions regarding regression analysis is incorrect?
A Assumption 1
B Assumption 2
C Assumption 3

28 Based on Exhibit 1, the standard error of the estimate is closest to:
A 0.04456.
B 0.04585.
C 0.05018.

29 Based on Exhibit 2, Vasileva should reject the null hypothesis that:
A the slope is less than or equal to 0.15.
B the intercept is less than or equal to zero.
C crude oil returns do not explain Amtex share returns.

30 Based on Exhibit 2 and Vasileva’s prediction of the crude oil return for Month 
37, the estimate of Amtex share return for Month 37 is closest to:
A −0.0024.
B 0.0071.
C 0.0119.

31 Using information from Exhibit 2, the 99% prediction interval for Amtex share 
return for Month 37 is best described as:
A Y f ± 0 0053. .

B Y f ± 0 0469. .

C Y f ± 0 1279. .
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The following information relates to Questions 
32–34
Doug Abitbol is a portfolio manager for Polyi Investments, a hedge fund that trades in 
the United States. Abitbol manages the hedge fund with the help of Robert Olabudo, 
a junior portfolio manager.

Abitbol looks at economists’ inflation forecasts and would like to examine the 
relationship between the US Consumer Price Index (US CPI) consensus forecast and 
the actual US CPI using regression analysis. Olabudo estimates regression coefficients 
to test whether the consensus forecast is unbiased. If the consensus forecasts are 
unbiased, the intercept should be 0.0 and the slope will be equal to 1.0. Regression 
results are presented in Exhibit 1. Additionally, Olabudo calculates the 95% prediction 
interval of the actual CPI using a US CPI consensus forecast of 2.8.

Exhibit 1   Regression Output: Estimating US CPI

Regression Statistics

R2 0.9859

Standard error of estimate 0.0009

Observations 60

Coefficients Standard Error t-Statistic
Intercept 0.0001 0.0002 0.5000
US CPI consensus forecast 0.9830 0.0155 63.4194

Notes:
1 The absolute value of the critical value for the t-statistic is 2.002 at the 5% level of 

significance.
2 The standard deviation of the US CPI consensus forecast is sx = 0.7539.

3 The mean of the US CPI consensus forecast is X  = 1.3350.

Finally, Abitbol and Olabudo discuss the forecast and forecast interval:

Observation 1 For a given confidence level, the forecast interval is the same 
no matter the US CPI consensus forecast.

Observation 2 A larger standard error of the estimate will result in a wider 
confidence interval.

32 Based on Exhibit 1, Olabudo should:
A conclude that the inflation predictions are unbiased.
B reject the null hypothesis that the slope coefficient equals one.
C reject the null hypothesis that the intercept coefficient equals zero.

33 Based on Exhibit 1, Olabudo should calculate a prediction interval for the actual 
US CPI closest to:
A 2.7506 to 2.7544.
B 2.7521 to 2.7529.
C 2.7981 to 2.8019.

34 Which of Olabudo’s observations of forecasting is correct?
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A Only Observation 1
B Only Observation 2
C Both Observation 1 and Observations 2

The following information relates to Questions 
35–38
Espey Jones is examining the relation between the net profit margin (NPM) of com-
panies, in percent, and their fixed asset turnover (FATO). He collected a sample of 35 
companies for the most recent fiscal year and fit several different functional forms, 
settling on the following model:

lnNPM FATOi ib b� �0 1 .

The results of this estimation are provided in Exhibit 1.

Exhibit 1   Results of Regressing NPM on FATO

Source df
Sum of 

Squares
Mean 

Square F p-Value

Regression 1 102.9152 102.9152 1,486.7079 0.0000

Residual 32 2.2152 0.0692

Total 33 105.1303

Coefficients
Standard 

Error t- Statistic p-Value

Intercept 0.5987 0.0561 10.6749 0.0000

FATO 0.2951 0.0077 38.5579 0.0000

35 The coefficient of determination is closest to:
A 0.0211.
B 0.9789.
C 0.9894.

36 The standard error of the estimate is closest to:
A 0.2631.
B 1.7849.
C 38.5579.

37 At a 0.01 level of significance, Jones should conclude that:
A the mean net profit margin is 0.5987%.
B the variation of the fixed asset turnover explains the variation of the natural 

log of the net profit margin.
C a change in the fixed asset turnover from 3 to 4 times is likely to result in a 

change in the net profit margin of 0.5987%.
38 The predicted net profit margin for a company with a fixed asset turnover of 2 

times is closest to:
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A 1.1889%.
B 1.8043%.
C 3.2835%
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SOLUTIONS
1 A The coefficient of determination is 0.4279:

Explained variation
Total variation

= =
60 16

140 58
0 4279.

.
. .

B F �
�� �

�� �
� �

60 16
1

140 58 60 16
60 2

60 16
1 3866

43 3882
.

. .
.

.
. .

C Begin with the sum of squares error of 140.58 − 60.16 = 80.42. Then calcu-
late the mean square error of 80.42 ÷ (60 − 2) = 1.38655. The standard error 
of the estimate is the square root of the mean square error: se = 1 38655.  = 
1.1775.

D The sample variance of the dependent variable uses the total variation of the 
dependent variable and divides it by the number of observations less one:

Y Y

n n
i

i

n �� �
�

�
�

�
�

�
�
�

2

1 1 1
140 58
60 1

2 3827Total variation . . .

 The sample standard deviation of the dependent variable is the square root 
of the variance, or 2 3827 1 544. .= .

2 C is correct. Homoskedasticity is the situation in which the variance of the 
residuals is constant across the observations.

3 A is correct. SHIFT is an indicator or dummy variable because it takes on only 
the values 0 and 1.

4 C is correct. In a simple regression with a single indicator variable, the intercept 
is the mean of the dependent variable when the indicator variable takes on a 
value of zero, which is before the shift in policy in this case.

5 C is correct. Whereas the intercept is the average of the dependent variable 
when the indicator variable is zero (that is, before the shift in policy), the slope 
is the difference in the mean of the dependent variable from before to after the 
change in policy.

6 A is correct. The null hypothesis of no difference in the annual growth rate is 
rejected at the 0.05 level: The calculated test statistic of −8.16188 is outside the 
bounds of ±2.048.

7 A The sample variance of the dependent variable is the sum of squares total 
divided by its degrees of freedom (n − 1 = 5 − 1 = 4, as given). Thus, the 
sample variance of the dependent variable is 95.2 ÷ 4 = 23.8.

B The coefficient of determination = 88.0 ÷ 95.2 = 0.92437.
C The F-statistic tests whether all the slope coefficients in a linear regression 

are equal to zero.
D The calculated value of the F-statistic is 36.667, as shown in the table. The 

corresponding p-value is less than 0.05, so you reject the null hypothesis of a 
slope equal to zero.

E The standard error of the estimate is the square root of the mean square 
error: se = 2 4.  = 1.54919.
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8 The Month 2 data point is an outlier, lying far away from the other data values. 
Because this outlier was caused by a data entry error, correcting the outlier 
improves the validity and reliability of the regression. In this case, revised R2 
is lower (from 0.9921 to 0.6784). The outliers created the illusion of a better fit 
from the higher R2; the outliers altered the estimate of the slope. The standard 
error of the estimate is lower when the data error is corrected (from 2.8619 
to 2.0624), as a result of the lower mean square error. However, at a 0.05 level 
of significance, both models fit well. The difference in the fit is illustrated in 
Exhibit 1.

Exhibit 1   The Fit of the Model with and without Data Errors

00

00

Portfolio Return

A. Before the Data Errors Are Corrected

8080

6060
7070

3030
4040

1010

5050

2020

–10–10

–20–20 80804040 60602020

Index Return

Portfolio Return (%)

B. After the Data Errors Are Corrected

88

44

66

–2–2

00

22

–4–4

–10–10 101000 55–5–5

Index Return (%)

9 A is correct. The coefficient of determination is the same as R2, which is 0.7436 
in the table.

10 C is correct. Because the slope is positive, the correlation between X and Y is 
simply the square root of the coefficient of determination: 0 7436 0 8623. �. .=

11 C is correct. To make a prediction using the regression model, multiply the 
slope coefficient by the forecast of the independent variable and add the result 
to the intercept. Expected value of CFO to sales = 0.077 + (0.826 × 5) = 4.207.

12 C is correct. The p-value is the smallest level of significance at which the null 
hypotheses concerning the slope coefficient can be rejected. In this case, the 
p-value is less than 0.05, and thus the regression of the ratio of cash flow from 
operations to sales on the ratio of net income to sales is significant at the 5% 
level.

13 A is correct. The data are observations over time.
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14 C is correct. From the regression equation, Expected return = 0.0138 + 
(−0.6486 × −0.01) = 0.0138 + 0.006486 = 0.0203, or 2.03%.

15 C is correct. R2 is the coefficient of determination. In this case, it shows that 
2.11% of the variability in Stellar’s returns is explained by changes in CPIENG.

16 B is correct. The standard error of the estimate is the standard deviation of the 
regression residuals.

17 C is the correct response because it is a false statement. The slope and intercept 
are both statistically different from zero at the 0.05 level of significance.

18 C is correct. The slope coefficient (shown in Exhibit 2) is negative. We could 
also determine this by looking at the cross- product (Exhibit 1), which is 
negative.

19 B is correct. The sample covariance is calculated as

X X Y Y

n

i i
i

n
�� � �� �
�

� � � � ��
�

1
1

9 2430 49 0 1886. .

20 A is correct. In simple regression, the R2 is the square of the pairwise correla-
tion. Because the slope coefficient is negative, the correlation is the negative of 
the square root of 0.0933, or −0.3054.

21 C is correct. Conclusions cannot be drawn regarding causation; they can be 
drawn only about association; therefore, Interpretations 1 and 2 are incorrect.

22 C is correct. Liu explains the variation of the short interest ratio using the varia-
tion of the debt ratio.

23 A is correct. The degrees of freedom are the number of observations minus the 
number of parameters estimated, which equals 2 in this case (the intercept and 
the slope coefficient). The number of degrees of freedom is 50 − 2 = 48.

24 B is correct. The t-statistic is −2.2219, which is outside the bounds created by 
the critical t-values of ±2.011 for a two- tailed test with a 5% significance level. 
The value of 2.011 is the critical t-value for the 5% level of significance (2.5% 
in one tail) for 48 degrees of freedom. A is incorrect because the mean of the 
short interest ratio is 192.3 ÷ 50 = 3.846. C is incorrect because the debt ratio 
explains 9.33% of the variation of the short interest ratio.

25 A is correct. The predicted value of the short interest ratio = 5.4975 + 
(−4.1589 × 0.40) = 5.4975 − 1.6636 = 3.8339.

26 C is correct because F = = =
Mean square regression

Mean square error
38 4404
7 7867

4.
.

.99367 .

27 C is correct. The assumptions of the linear regression model are that (1) the 
relationship between the dependent variable and the independent variable is 
linear in the parameters b0 and b1, (2) the residuals are independent of one 
another, (3) the variance of the error term is the same for all observations, and 
(4) the error term is normally distributed. Assumption 3 is incorrect because 
the dependent variable need not be normally distributed.

28 B is correct. The standard error of the estimate for a linear regression model 
with one independent variable is calculated as the square root of the mean 
square error:

se = =
0 071475

34
0 04585. . .
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29 C is correct. Crude oil returns explain the Amtex share returns if the slope coef-
ficient is statistically different from zero. The slope coefficient is 0.2354, and the 
calculated t-statistic is

t � �
�

0 2354 0 0000
0 0760

3 0974. .
.

. ,

 which is outside the bounds of the critical values of ±2.728.
 Therefore, Vasileva should reject the null hypothesis that crude oil returns do 

not explain Amtex share returns, because the slope coefficient is statistically 
different from zero.

 A is incorrect because the calculated t-statistic for testing the slope against 0.15 

is t � �
�

0 2354 0 1500
0 0760

1 1237. .
.

. , which is less than the critical value of +2.441.

 B is incorrect because the calculated t-statistic is t � �
�

0 0095 0 0000
0 0078

1 2179. .
.

. , 
which is less than the critical value of +2.441.

30 B is correct. The predicted value of the dependent variable, Amtex share return, 
given the value of the independent variable, crude oil return, −0.01, is calcu-
lated as Y b b Xi

� � �� � � � � �� ��� �� �0 1 0 0095 0 2354 0 01 0 0071. . . . .
31 C is correct. The predicted share return is 0.0095 + [0.2354 × (−0.01)] = 

0.0071. The lower limit for the prediction interval is 0.0071 − (2.728 × 0.0469) 
= −0.1208, and the upper limit for the prediction interval is 0.0071 + (2.728 × 
0.0469) = 0.1350.

 A is incorrect because the bounds of the interval should be based on the 
standard error of the forecast and the critical t-value, not on the mean of the 
dependent variable.

 B is incorrect because bounds of the interval are based on the product of the 
standard error of the forecast and the critical t-value, not simply the standard 
error of the forecast.

32 A is correct. We fail to reject the null hypothesis of a slope equal to one, and we 
fail to reject the null hypothesis of an intercept equal to zero. The test of the 

slope equal to 1.0 is t � �
� �

0 9830 1 000
0 0155

1 09677. .
.

. . The test of the intercept 

equal to 0.0 is t � �
�

0 0001 0 0000
00002

0 5000. .
.

. . Therefore, we conclude that the 

forecasts are unbiased.
33 A is correct. The forecast interval for inflation is calculated in three steps:
 Step 1. Make the prediction given the US CPI forecast of 2.8:

Y b b X


� �

� � �� �
�

0 1

0 0001 0 9830 2 8
2 7525
. . .
. .
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 Step 2. Compute the variance of the prediction error:

s s n X X n s

s

f e f x

f

2 2 2 2

2 2

1 1 1

0 0009

� � � � � �� ��
��

�
��

�� � ��
�

�
�

�
�
�

�
�
�

�

.

. 11 1 60 2 8 1 3350 60 1 0 7539

0 000

2 2

2

� � � � �� ��
��

�
��

�� � ��
�

�
� �

�

. . . .

.s f 000088

0 0009

.

. .s f �

 Step 3. Compute the prediction interval:

Y t sc f
 � �

2.7525 ± (2.0 × 0.0009)

Lower bound: 2.7525 − (2.0 × 0.0009) = 2.7506.

Upper bound: 2.7525 + (2.0 × 0.0009) = 2.7544.

 So, given the US CPI forecast of 2.8, the 95% prediction interval is 2.7506 to 
2.7544.

34 B is correct. The confidence level influences the width of the forecast interval 
through the critical t-value that is used to calculate the distance from the fore-
casted value: The larger the confidence level, the wider the interval. Therefore, 
Observation 1 is not correct.

 Observation 2 is correct. The greater the standard error of the estimate, the 
greater the standard error of the forecast.

35 B is correct. The coefficient of determination is 102.9152 ÷ 105.1303 = 0.9789.
36 A is correct. The standard error is the square root of the mean square error, 

or 0 0692 0 2631. .= .
37 B is correct. The p-value corresponding to the slope is less than 0.01, so we 

reject the null hypothesis of a zero slope, concluding that the fixed asset turn-
over explains the natural log of the net profit margin.

38 C is correct. The predicted natural log of the net profit margin is 0.5987 + (2 × 
0.2951) = 1.1889. The predicted net profit margin is e1 1889 3 2835. .= %.
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APPENDICES

Appendix A Cumulative Probabilities for a Standard Normal Distribution
Appendix B Table of the Student’s t-Distribution (One- Tailed Probabilities)
Appendix C Values of X2 (Degrees of Freedom, Level of Significance)
Appendix D Table of the F-Distribution
Appendix E Critical Values for the Durbin- Watson Statistic (α = .05)
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 Appendix A 
 Cumulative Probabilities for a Standard Normal Distribution  
 P(Z ≤ x) = N(x) for x ≥ 0 or P(Z ≤ z) = N(z) for z ≥ 0

 x or z  0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

 0.00  0.5000  0.5040  0.5080  0.5120  0.5160  0.5199  0.5239  0.5279  0.5319  0.5359
 0.10  0.5398  0.5438  0.5478  0.5517  0.5557  0.5596  0.5636  0.5675  0.5714  0.5753
 0.20  0.5793  0.5832  0.5871  0.5910  0.5948  0.5987  0.6026  0.6064  0.6103  0.6141
 0.30  0.6179  0.6217  0.6255  0.6293  0.6331  0.6368  0.6406  0.6443  0.6480  0.6517
 0.40  0.6554  0.6591  0.6628  0.6664  0.6700  0.6736  0.6772  0.6808  0.6844  0.6879
 0.50  0.6915  0.6950  0.6985  0.7019  0.7054  0.7088  0.7123  0.7157  0.7190  0.7224
 0.60  0.7257  0.7291  0.7324  0.7357  0.7389  0.7422  0.7454  0.7486  0.7517  0.7549
 0.70  0.7580  0.7611  0.7642  0.7673  0.7704  0.7734  0.7764  0.7794  0.7823  0.7852
 0.80  0.7881  0.7910  0.7939  0.7967  0.7995  0.8023  0.8051  0.8078  0.8106  0.8133
 0.90  0.8159  0.8186  0.8212  0.8238  0.8264  0.8289  0.8315  0.8340  0.8365  0.8389
 1.00  0.8413  0.8438  0.8461  0.8485  0.8508  0.8531  0.8554  0.8577  0.8599  0.8621
 1.10  0.8643  0.8665  0.8686  0.8708  0.8729  0.8749  0.8770  0.8790  0.8810  0.8830
 1.20  0.8849  0.8869  0.8888  0.8907  0.8925  0.8944  0.8962  0.8980  0.8997  0.9015
 1.30  0.9032  0.9049  0.9066  0.9082  0.9099  0.9115  0.9131  0.9147  0.9162  0.9177
 1.40  0.9192  0.9207  0.9222  0.9236  0.9251  0.9265  0.9279  0.9292  0.9306  0.9319
 1.50  0.9332  0.9345  0.9357  0.9370  0.9382  0.9394  0.9406  0.9418  0.9429  0.9441
 1.60  0.9452  0.9463  0.9474  0.9484  0.9495  0.9505  0.9515  0.9525  0.9535  0.9545
 1.70  0.9554  0.9564  0.9573  0.9582  0.9591  0.9599  0.9608  0.9616  0.9625  0.9633
 1.80  0.9641  0.9649  0.9656  0.9664  0.9671  0.9678  0.9686  0.9693  0.9699  0.9706
 1.90  0.9713  0.9719  0.9726  0.9732  0.9738  0.9744  0.9750  0.9756  0.9761  0.9767
 2.00  0.9772  0.9778  0.9783  0.9788  0.9793  0.9798  0.9803  0.9808  0.9812  0.9817
 2.10  0.9821  0.9826  0.9830  0.9834  0.9838  0.9842  0.9846  0.9850  0.9854  0.9857
 2.20  0.9861  0.9864  0.9868  0.9871  0.9875  0.9878  0.9881  0.9884  0.9887  0.9890
 2.30  0.9893  0.9896  0.9898  0.9901  0.9904  0.9906  0.9909  0.9911  0.9913  0.9916
 2.40  0.9918  0.9920  0.9922  0.9925  0.9927  0.9929  0.9931  0.9932  0.9934  0.9936
 2.50  0.9938  0.9940  0.9941  0.9943  0.9945  0.9946  0.9948  0.9949  0.9951  0.9952
 2.60  0.9953  0.9955  0.9956  0.9957  0.9959  0.9960  0.9961  0.9962  0.9963  0.9964
 2.70  0.9965  0.9966  0.9967  0.9968  0.9969  0.9970  0.9971  0.9972  0.9973  0.9974
 2.80  0.9974  0.9975  0.9976  0.9977  0.9977  0.9978  0.9979  0.9979  0.9980  0.9981
 2.90  0.9981  0.9982  0.9982  0.9983  0.9984  0.9984  0.9985  0.9985  0.9986  0.9986
 3.00  0.9987  0.9987  0.9987  0.9988  0.9988  0.9989  0.9989  0.9989  0.9990  0.9990
 3.10  0.9990  0.9991  0.9991  0.9991  0.9992  0.9992  0.9992  0.9992  0.9993  0.9993
 3.20  0.9993  0.9993  0.9994  0.9994  0.9994  0.9994  0.9994  0.9995  0.9995  0.9995
 3.30  0.9995  0.9995  0.9995  0.9996  0.9996  0.9996  0.9996  0.9996  0.9996  0.9997
 3.40  0.9997  0.9997  0.9997  0.9997  0.9997  0.9997  0.9997  0.9997  0.9997  0.9998
 3.50  0.9998  0.9998  0.9998  0.9998  0.9998  0.9998  0.9998  0.9998  0.9998  0.9998
 3.60  0.9998  0.9998  0.9999  0.9999  0.9999  0.9999  0.9999  0.9999  0.9999  0.9999
 3.70  0.9999  0.9999  0.9999  0.9999  0.9999  0.9999  0.9999  0.9999  0.9999  0.9999
 3.80  0.9999  0.9999  0.9999  0.9999  0.9999  0.9999  0.9999  0.9999  0.9999  0.9999
 3.90  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
 4.00  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000

 For example, to fi nd the z-value leaving 2.5 percent of the area/probability in the upper tail, fi nd the element 0.9750 in the body of the table. Read 
1.90 at the left end of the element’s row and 0.06 at the top of the element’s column, to give 1.90 + 0.06 = 1.96. Table generated with Excel.

 Quantitative Methods for Investment Analysis, Second Edition, by Richard A. DeFusco, CFA, Dennis W. McLeavey, CFA, Jerald E. Pinto, CFA, and 
David E. Runkle, CFA. Copyright © 2004 by CFA Institute.
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 Appendix A (continued) 
 Cumulative Probabilities for a Standard Normal Distribution  
 P(Z ≤ x) = N(x) for x ≤ 0 or P(Z ≤ z) = N(z) for z ≤ 0

 x or z  0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09
 0.0  0.5000  0.4960  0.4920  0.4880  0.4840  0.4801  0.4761  0.4721  0.4681  0.4641

 −0.10  0.4602  0.4562  0.4522  0.4483  0.4443  0.4404  0.4364  0.4325  0.4286  0.4247
 −0.20  0.4207  0.4168  0.4129  0.4090  0.4052  0.4013  0.3974  0.3936  0.3897  0.3859
 −0.30  0.3821  0.3783  0.3745  0.3707  0.3669  0.3632  0.3594  0.3557  0.3520  0.3483
 −0.40  0.3446  0.3409  0.3372  0.3336  0.3300  0.3264  0.3228  0.3192  0.3156  0.3121
 −0.50  0.3085  0.3050  0.3015  0.2981  0.2946  0.2912  0.2877  0.2843  0.2810  0.2776
 −0.60  0.2743  0.2709  0.2676  0.2643  0.2611  0.2578  0.2546  0.2514  0.2483  0.2451
 −0.70  0.2420  0.2389  0.2358  0.2327  0.2296  0.2266  0.2236  0.2206  0.2177  0.2148
 −0.80  0.2119  0.2090  0.2061  0.2033  0.2005  0.1977  0.1949  0.1922  0.1894  0.1867
 −0.90  0.1841  0.1814  0.1788  0.1762  0.1736  0.1711  0.1685  0.1660  0.1635  0.1611
 −1.00  0.1587  0.1562  0.1539  0.1515  0.1492  0.1469  0.1446  0.1423  0.1401  0.1379
 −1.10  0.1357  0.1335  0.1314  0.1292  0.1271  0.1251  0.1230  0.1210  0.1190  0.1170
 −1.20  0.1151  0.1131  0.1112  0.1093  0.1075  0.1056  0.1038  0.1020  0.1003  0.0985
 −1.30  0.0968  0.0951  0.0934  0.0918  0.0901  0.0885  0.0869  0.0853  0.0838  0.0823
 −1.40  0.0808  0.0793  0.0778  0.0764  0.0749  0.0735  0.0721  0.0708  0.0694  0.0681
 −1.50  0.0668  0.0655  0.0643  0.0630  0.0618  0.0606  0.0594  0.0582  0.0571  0.0559
 −1.60  0.0548  0.0537  0.0526  0.0516  0.0505  0.0495  0.0485  0.0475  0.0465  0.0455
 −1.70  0.0446  0.0436  0.0427  0.0418  0.0409  0.0401  0.0392  0.0384  0.0375  0.0367
 −1.80  0.0359  0.0351  0.0344  0.0336  0.0329  0.0322  0.0314  0.0307  0.0301  0.0294
 −1.90  0.0287  0.0281  0.0274  0.0268  0.0262  0.0256  0.0250  0.0244  0.0239  0.0233
 −2.00  0.0228  0.0222  0.0217  0.0212  0.0207  0.0202  0.0197  0.0192  0.0188  0.0183
 −2.10  0.0179  0.0174  0.0170  0.0166  0.0162  0.0158  0.0154  0.0150  0.0146  0.0143
 −2.20  0.0139  0.0136  0.0132  0.0129  0.0125  0.0122  0.0119  0.0116  0.0113  0.0110
 −2.30  0.0107  0.0104  0.0102  0.0099  0.0096  0.0094  0.0091  0.0089  0.0087  0.0084
 −2.40  0.0082  0.0080  0.0078  0.0075  0.0073  0.0071  0.0069  0.0068  0.0066  0.0064
 −2.50  0.0062  0.0060  0.0059  0.0057  0.0055  0.0054  0.0052  0.0051  0.0049  0.0048
 −2.60  0.0047  0.0045  0.0044  0.0043  0.0041  0.0040  0.0039  0.0038  0.0037  0.0036
 −2.70  0.0035  0.0034  0.0033  0.0032  0.0031  0.0030  0.0029  0.0028  0.0027  0.0026
 −2.80  0.0026  0.0025  0.0024  0.0023  0.0023  0.0022  0.0021  0.0021  0.0020  0.0019
 −2.90  0.0019  0.0018  0.0018  0.0017  0.0016  0.0016  0.0015  0.0015  0.0014  0.0014
 −3.00  0.0013  0.0013  0.0013  0.0012  0.0012  0.0011  0.0011  0.0011  0.0010  0.0010
 −3.10  0.0010  0.0009  0.0009  0.0009  0.0008  0.0008  0.0008  0.0008  0.0007  0.0007
 −3.20  0.0007  0.0007  0.0006  0.0006  0.0006  0.0006  0.0006  0.0005  0.0005  0.0005
 −3.30  0.0005  0.0005  0.0005  0.0004  0.0004  0.0004  0.0004  0.0004  0.0004  0.0003
 −3.40  0.0003  0.0003  0.0003  0.0003  0.0003  0.0003  0.0003  0.0003  0.0003  0.0002
 −3.50  0.0002  0.0002  0.0002  0.0002  0.0002  0.0002  0.0002  0.0002  0.0002  0.0002
 −3.60  0.0002  0.0002  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001
 −3.70  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001
 −3.80  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001
 −3.90  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
 −4.00  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000

 For example, to fi nd the z-value leaving 2.5 percent of the area/probability in the lower tail, fi nd the element 0.0250 in the body of the table. Read 
–1.90 at the left end of the element’s row and 0.06 at the top of the element’s column, to give –1.90 – 0.06 = –1.96. Table generated with Excel.

© CFA Institute. For candidate use only. Not for distribution.
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 Appendix B  
 Table of the Student’s t-Distribution (One- Tailed Probabilities) 
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 Appendix C  
 Values of χ2 (Degrees of Freedom, Level of Significance) 

 Degrees of 
Freedom

 Probability in Right Tail

 0.99  0.975  0.95  0.9  0.1  0.05  0.025  0.01  0.005

 1  0.000157  0.000982  0.003932  0.0158  2.706  3.841  5.024  6.635  7.879
 2  0.020100  0.050636  0.102586  0.2107  4.605  5.991  7.378  9.210  10.597
 3  0.1148  0.2158  0.3518  0.5844  6.251  7.815  9.348  11.345  12.838
 4  0.297  0.484  0.711  1.064  7.779  9.488  11.143  13.277  14.860
 5  0.554  0.831  1.145  1.610  9.236  11.070  12.832  15.086  16.750

 6  0.872  1.237  1.635  2.204  10.645  12.592  14.449  16.812  18.548
 7  1.239  1.690  2.167  2.833  12.017  14.067  16.013  18.475  20.278
 8  1.647  2.180  2.733  3.490  13.362  15.507  17.535  20.090  21.955
 9  2.088  2.700  3.325  4.168  14.684  16.919  19.023  21.666  23.589

 10  2.558  3.247  3.940  4.865  15.987  18.307  20.483  23.209  25.188

 11  3.053  3.816  4.575  5.578  17.275  19.675  21.920  24.725  26.757
 12  3.571  4.404  5.226  6.304  18.549  21.026  23.337  26.217  28.300
 13  4.107  5.009  5.892  7.041  19.812  22.362  24.736  27.688  29.819
 14  4.660  5.629  6.571  7.790  21.064  23.685  26.119  29.141  31.319
 15  5.229  6.262  7.261  8.547  22.307  24.996  27.488  30.578  32.801

 16  5.812  6.908  7.962  9.312  23.542  26.296  28.845  32.000  34.267
 17  6.408  7.564  8.672  10.085  24.769  27.587  30.191  33.409  35.718
 18  7.015  8.231  9.390  10.865  25.989  28.869  31.526  34.805  37.156
 19  7.633  8.907  10.117  11.651  27.204  30.144  32.852  36.191  38.582
 20  8.260  9.591  10.851  12.443  28.412  31.410  34.170  37.566  39.997

 21  8.897  10.283  11.591  13.240  29.615  32.671  35.479  38.932  41.401
 22  9.542  10.982  12.338  14.041  30.813  33.924  36.781  40.289  42.796
 23  10.196  11.689  13.091  14.848  32.007  35.172  38.076  41.638  44.181
 24  10.856  12.401  13.848  15.659  33.196  36.415  39.364  42.980  45.558
 25  11.524  13.120  14.611  16.473  34.382  37.652  40.646  44.314  46.928

 26  12.198  13.844  15.379  17.292  35.563  38.885  41.923  45.642  48.290
 27  12.878  14.573  16.151  18.114  36.741  40.113  43.195  46.963  49.645
 28  13.565  15.308  16.928  18.939  37.916  41.337  44.461  48.278  50.994
 29  14.256  16.047  17.708  19.768  39.087  42.557  45.722  49.588  52.335
 30  14.953  16.791  18.493  20.599  40.256  43.773  46.979  50.892  53.672

 50  29.707  32.357  34.764  37.689  63.167  67.505  71.420  76.154  79.490
 60  37.485  40.482  43.188  46.459  74.397  79.082  83.298  88.379  91.952
 80  53.540  57.153  60.391  64.278  96.578  101.879  106.629  112.329  116.321

 100  70.065  74.222  77.929  82.358  118.498  124.342  129.561  135.807  140.170

 To have a probability of 0.05 in the right tail when df = 5, the tabled value is χ2(5, 0.05) = 11.070.
 Quantitative Methods for Investment Analysis, Second Edition, by Richard A. DeFusco, CFA, Dennis W. McLeavey, CFA, Jerald E. Pinto, 
CFA, and David E. Runkle, CFA. Copyright © 2004 by CFA Institute.
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 Table of the F-Distribution 
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 Appendix D (continued) 
 Table of the F-Distribution 
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 Appendix D (continued)  
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 Appendix D (continued) 
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504 Appendices

 Appendix E  
 Critical Values for the Durbin- Watson Statistic (α = .05)

  K = 1  K = 2  K = 3  K = 4 K = 5

 n  dl  du  dl  du  dl  du  dl  du  dl  du

 15  1.08  1.36  0.95  1.54  0.82  1.75  0.69  1.97  0.56  2.21
 16  1.10  1.37  0.98  1.54  0.86  1.73  0.74  1.93  0.62  2.15
 17  1.13  1.38  1.02  1.54  0.90  1.71  0.78  1.90  0.67  2.10
 18  1.16  1.39  1.05  1.53  0.93  1.69  0.82  1.87  0.71  2.06
 19  1.18  1.40  1.08  1.53  0.97  1.68  0.86  1.85  0.75  2.02
 20  1.20  1.41  1.10  1.54  1.00  1.68  0.90  1.83  0.79  1.99
 21  1.22  1.42  1.13  1.54  1.03  1.67  0.93  1.81  0.83  1.96
 22  1.24  1.43  1.15  1.54  1.05  1.66  0.96  1.80  0.86  1.94
 23  1.26  1.44  1.17  1.54  1.08  1.66  0.99  1.79  0.90  1.92
 24  1.27  1.45  1.19  1.55  1.10  1.66  1.01  1.78  0.93  1.90
 25  1.29  1.45  1.21  1.55  1.12  1.66  1.04  1.77  0.95  1.89
 26  1.30  1.46  1.22  1.55  1.14  1.65  1.06  1.76  0.98  1.88
 27  1.32  1.47  1.24  1.56  1.16  1.65  1.08  1.76  1.01  1.86
 28  1.33  1.48  1.26  1.56  1.18  1.65  1.10  1.75  1.03  1.85
 29  1.34  1.48  1.27  1.56  1.20  1.65  1.12  1.74  1.05  1.84
 30  1.35  1.49  1.28  1.57  1.21  1.65  1.14  1.74  1.07  1.83
 31  1.36  1.50  1.30  1.57  1.23  1.65  1.16  1.74  1.09  1.83
 32  1.37  1.50  1.31  1.57  1.24  1.65  1.18  1.73  1.11  1.82
 33  1.38  1.51  1.32  1.58  1.26  1.65  1.19  1.73  1.13  1.81
 34  1.39  1.51  1.33  1.58  1.27  1.65  1.21  1.73  1.15  1.81
 35  1.40  1.52  1.34  1.58  1.28  1.65  1.22  1.73  1.16  1.80
 36  1.41  1.52  1.35  1.59  1.29  1.65  1.24  1.73  1.18  1.80
 37  1.42  1.53  1.36  1.59  1.31  1.66  1.25  1.72  1.19  1.80
 38  1.43  1.54  1.37  1.59  1.32  1.66  1.26  1.72  1.21  1.79
 39  1.43  1.54  1.38  1.60  1.33  1.66  1.27  1.72  1.22  1.79
 40  1.44  1.54  1.39  1.60  1.34  1.66  1.29  1.72  1.23  1.79
 45  1.48  1.57  1.43  1.62  1.38  1.67  1.34  1.72  1.29  1.78
 50  1.50  1.59  1.46  1.63  1.42  1.67  1.38  1.72  1.34  1.77
 55  1.53  1.60  1.49  1.64  1.45  1.68  1.41  1.72  1.38  1.77
 60  1.55  1.62  1.51  1.65  1.48  1.69  1.44  1.73  1.41  1.77
 65  1.57  1.63  1.54  1.66  1.50  1.70  1.47  1.73  1.44  1.77
 70  1.58  1.64  1.55  1.67  1.52  1.70  1.49  1.74  1.46  1.77
 75  1.60  1.65  1.57  1.68  1.54  1.71  1.51  1.74  1.49  1.77
 80  1.61  1.66  1.59  1.69  1.56  1.72  1.53  1.74  1.51  1.77
 85  1.62  1.67  1.60  1.70  1.57  1.72  1.55  1.75  1.52  1.77
 90  1.63  1.68  1.61  1.70  1.59  1.73  1.57  1.75  1.54  1.78
 95  1.64  1.69  1.62  1.71  1.60  1.73  1.58  1.75  1.56  1.78

 100  1.65  1.69  1.63  1.72  1.61  1.74  1.59  1.76  1.57  1.78

 Note: K = the number of slope parameters in the model.
 Source: From J. Durbin and G. S. Watson, “Testing for Serial Correlation in Least Squares Regression, II.” Biometrika 38 (1951): 159–178. 
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